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ABSTRACT 

The pnmary goal of an Automatic Programming srystem is to generate programs from some 
high-level description of a user's problem. This task may involve a diversity of efforts, rang.ng from 
modelling 'he user to optimizing the final program product. In particular, the choice of a suitable 
internal program model will influence the direction and capabilities of an Automatic Progiamming 
system; the form of the language will have an impact not only on the ease of the translation ti.sk, but 
on the scope of the program analysis for deteTnining the accuracy of the generated prog'am as 
well. 

This research effort presents a system called XREP, which includes a formalism for witing 
programs that explicitly addresses and highlights some program construction and verification is; ues. 
The formalism, a production system, includes facilities for generating an object and referencing i by 
specifying its class type and identifying the desired instance by providing some limiting predicate, 
the predominant method used in human communication for referencing objects. XREP's language 
interpreter generates a graph that defines the process under inspection, making explicit both whon 
and where variable bindings for jenerated objects take place. From the standpoint of proper da a 
structuring these extra dimensions found in the execution graph are useful for analyzing a prograr >, 
particularly with respect to ease of data access, detecting access ambiguity, proper sequence cf 
bindings, and other related issues. 

Another facet of program writing includes the ability to test thf. final product in order to 
verify that the program's behavior matches the user's expectation. XREP accepts an intention string 
of observable events, externally supplied by the user, for this purpose. Because the production 
language formalism is natural for a parsin« task, the intention string, as a protocol of an instance of 
the process described by the productions, can be parsed for acceptability. The system will thus be 
able to run in two modes: generation (to produce a behavior instance) or parse (determining whether 
a particular behavior instance could have been generatad from a given program). 

In order to show the adequacy of the vanous representations, particularly the production 
language, the execution graph, the form of the data variables and objects, and the intention string 
mechanism, specific automatic dehuggmg fecnniques were developed that apply to problems normally 
found in human communications, such as improperly stated loop control, ambiguous references, and 
data structuring faults. The nature of this debugging effort emphasizes some of the problems which 
an Automatic Programming translator will face in trying to convert human inputs into a computer 
program. 

Though this research investigates only one analytical phase of Automatic Programming, !he 
form of the representations chosen for it has an impact upon the entire effort; the capabilities 
displayed in this report are meant as a showcase for those formalisms. Thus, XREP's variables, 
as a counterpart to natural language objects, are shown to have an integrated place within the 
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'I ■' wwm*m-,i*mmri™im*m' mnrfmrnM^^nmnviimmiw .m-. »■WSpWMIiWLiP'U' ^ 

production language, while their placement within the execution graph promotes powerful and 
intuitive accessing mechanisms. The nature of the production language not only makes the execution 
y,raph simple to generate, but also associates them visually, making it easy to relate analyses in the 
graph to the language. The intention string provides a reasonable, if not formal, way to specify 
program expectations, with the production language a perfect vehicle for carrying out the associated 
parsing. And, finally, high-level debugging techniques are shown to be possible in a suitably rich 
environment. 

This is part of a series of reports describing ISI research directed toward reducing significantly 
the cost of military software while improving its application and upgrading the general quality of 

software. This report covers a significant portion of the author's DSC doctoral dissertation, 

completed at ISI. 

VI 
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I.    PROBLEM ST/ITKMENT 

1.1     INTRODUCTION 

The concept of a programming environment has added new dimensions to software research. 
With the advent of interactive use of computers a programmer can participate actively in software 
design and development. It is no longer realistic to view programming as a process of discrete steps 
starting at composition, then alternating between submittals and debugging the results. Instead it 
becomes a dynamic process with unclear demarcations. Recent programming systems specificaUy 
designed to operate interactively, the beot example of which is INTERLISP [TEITELMAN 74], exemplify 
this concept by also taking an active role in the programming process. INTERLISP not only provides 
tools to the programmer, but it also "watcheb" over the process, giving aid when it can by detecting 
local errors and providing numerous "smart" commands to hide unnecessary programming details. 
Only a limited attempt is made, however, to "understand" the program, a task which falls into a 
different area of research called Automatic Programming. 

The final goal of Automatic Programming is to be able to generate computer programs from 
natural descriptions of the tasks to be performed. By attempting to take over the entire generation 
process, Automatic Programming represents the ultimate extension of the capabilities of the 
programming environment. Becauie of economics and the state of our knowledge, any Automatic 
Programming system will fall short of that ideal in the foreseeable future. But progress in producing 
more capable and active Automatic Programming systems depends entirely on the ability of the 
researchers to understand and model the programming process. A useful programming model must 
cover a variety of tasks: the host of ways to specify programs, program construction issues, 
verification and debugging, and so forthO). Yet this understanding is possible because the domain is 
limited to one of processes, programs, and algorithms. The diversity of this knowledge allows 
different aspects of the total problem to be researched separately. The investigation of these 
independent areas contributes to the long-range project, while in the short term techniques ore 
discovered for extending existing software systems. Thus we can envision interactive Automatic 
Programming systems which work together with a novice to produce a program from some process 
description. The efforts of this dissertation are directed toward this kind of framework, i.e., a user 
using natural language to interact with an Automatic Programming system. 

A system of this kind must have some basic knowledge, including natural language 
understanding, awareness of programming concepts like variables, loops, scope, structure, and 
debugging capabilities, all of which must be relatable to the human.   The need for a progressive 

(i) An overview o' Automatic Programming can be found in [BALZER 72]. 
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PROBLEM STATEMENT 

dialogue suggests that the form of internal representations should be close to the user's original in 
order to promote a natural basis for communication. Though the present report does not 
directly deal with this concept, it is the basis for many implementation decisions. The hypothetical 
nature of an Automatic Programming system forces any claims and assumptions to rely on intuition 
rather than strict results. Still, as an experimental study in representation, the results are 
independent of the Automatic Programming framework. 

The system to be presented, called XREP, consists of a language, an interpreter, a monitor, and 
a debugger. The interpreter and monitor execute the program while building a representative graph 
which is used by the interpreter to carry out evaluations and by the debugger as a history of the 
process. The language, called PLX, is designed to address three issues: (1) the program construction 
task faced by Automatic Programming, (2) the methods used in natural language for generating jnd 
addressing objects, and (3) the simplification of the error detection and correction task faced by a 
debugger. 

Although not designed for any particular Automatic Programming system, XREP will be placed 
within a hypothetical framework in order to better focus the rest of the report. Figure 1 
displays this system showing the transformation of the original input into a final program. 

INPUT 
INITIAL 

FIRST PASS 
TRANSLATION 

PROGRAM ANALYSIS 

TRANSLATE 
TO PLX- 
STATIC 

ANALYSIS 

XREP- 
DYNAMIC 
ANALYSIS 

COMPILE 
AND 

OPTIMIZE 

p OUTPUT 
'PROGRAM 

NATURAL 
LANGUAGE 

RELATIONAL 
FORM 

PLX 

PROGRAM 

PLX 

PROGRAM 

Figure 1.   A hypothetical Automatic Programming system 

The original input is given to a first-pass natural language translator which generates some 
internal form, say a relational description of that input. The next module massages that description, 
fixing whatever it can with its static analysis. Some of its actions might include spelling correction, 
reordering procedure parameters, altering colloquialisms, supplying obvious missing information, etc. 
The PLX program, the output from that phase, is then passed to XREP for an execution analysis. The 
PLX program then enters a compile and optimize phase resulting in the final product. For the 
moment we will assume that interaction is possible at any stage of the processing. 

■     -             ~^—.~  ■           — — - ■ — • 



PROBLEM STATEMENT 

Within this framework all of the errors detected by XREP's debugger bre English situations 
which may cause problems for an Automatic Programming translator. Many of these problems can be 
better resolved at execution time, when the dynamic context is available, than within the static 
environment of a translator.  XREP has been designed on this principle. 

The adequacy of all the internal representations, programming language included, should be 
measured by the success of the debugger in having compatible and understandable models of the 
problem and its solution. Both models are required to understand a program's behavior and have 
expectations of its results from which its correctness can be tested or verified. Understanding 
programs -- the primary focus of Automatic Programming — can occur only in such an environment. 

Generally an experimental system produces some characteristic behavior to support its claims. 
However, the proposed debugging methods of XREP are intended to augment the capabilities of an 
Automatic Programming system by providing a powerful enough framework in which to address 
program construction issues, as well as do debugging. They must therefore be evaluated in this 
larger context rather than simply as debugging facilities. Although we have obviously not built a 
ccmplcfo Automatic Programming system as part of this effort, we will attempt later to show 
how the features of XREP could facilitate such a system. 

1.2     PROGRAM BEHAVIOR AND KXPECTATIONS 

Analyzing a program's behavior involves some expectation of its results, many of which are 
independent of any particular task. Halting, avoiding numeric overflow, and addressing proper d-jta 
are expectations relevant to all programs, but specific expectations are obviously present as well. 
When they can be formally stated, the program construction task can often be automated and proved 
correct(ii). Unfortunately, few processes (especially long ones) can be defined so functionally. Yet 
informal expectations are used by human programmers to help check out their product. XREP's 
"intention mechanism," which is used to monitor a program's execution, is informal in the same way. 
The mechanism's function is to help the debugger detect flaws (i.e., deviations from exoected 
behavior), not prove correctness. Still, the debugger car, extract much information by noting what is 
expected and what is produced — information certain to be useful. 

Given this setting for a monitor and debugger, the next section will describe the. struciures 
and formalisms on which they work. 

(ii) This research will be reviewed in Section 5.3. 
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PROBLEM STATEMENT 

1-3     REPRESENTATION/1L REQUIREMENTS 

The choice of representations in XREP involves two design criteria-   structure n«H f« K 
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The Profirramminpr iMUßunga 

Due to the nature of this project, a new production language, named PLX, was designed for 
XREP. Because they did not nc;ed to contend with "features" of existing languages, the constructs of 
PLX could be designed to focus directly on relevant issues. The justification for a production 
language has an even deeper basis. Production languages have a simple control structure; in fact, 
production languages have too simple a control structure for most programmer's use, which explains 
not only its absence in prograrnning shops but also its usefulness for analysis. Understanding a 
program's execution is simplified with a well-behaved flow of control. However, the nondeterministic 
behavior of some production systems, including ours, can inhibit error detection by trying fruitless 
backup instead of recognizing a true flaw. To aid in this case PLX has a "terminal" operator which 
the monitor uses in trying to identify types of failures as they arise. 

Another feature of production systems is their inspectability. Since debugging is a primary 
concern of the system, the programs on which it operates must be easily modifiable. The production 
rules maintain a perspicuity which make them ideal for this task. 

Finally, though not normally usea in this w^y, production systems can impose a top-dovn 
discipline on program creation. The complexity of acquiring a problem statement from a human 
seems to dictate that an Automatic Programming system play an active role in the process. 
Top-down methods provide an excellent framework on which to base such a dicilogue, with the 
nonterminals of the language acting as reference points for maintaining continuity. Unfortunately, 
traditional production systems tend to defeat the top-down benefits by havin« unnecessary 
nonterminals solely in order to produce the appropriate structure. PLX solves this problem by 
reans of a structuring convention. The acquisition of a program is not a concern of this dissertation, 
out ;he structuring issue is. 

Execution Modelling 

A model for understanding a program's execution must account for many details not found in 
most systems. A Program Status Word or execution stack is not adequate for analyzing execution 
behavior. Besides presenting a current view of a process in the form of a program counter and a 
data base, a model must also address dynamic issues accounting for the history of the entire 
execution process: how control was passed and gained, when and where variables were bound, and 
what data are available to a particular event. At the same time, that model should reflect the 
program it represents. In other words, the production language and execution motel should 
accommodate each other; the language, by simplifying the model's construction, the model, by 
maintaining the structure imposed by the language. 

In XREP a threaded tree structure, called a Process Elaboration 'Jraph (PEG), and an Access 
Graph, which is just another view of the PEG, .atisfy those requirements. By emphasizing control 
issues and maintaining closeness to tne production rules, the PEG becomes the focus of the program 
modification algorithms. The Access Graph emphasizes a different picture of the execttion by 
accentuating access and scope issues.   That is, given an event in the Access Graph, the data in its 
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PROBLEM STATEMENT 

scope of reference are immediately observable. The discussion of the generic data types depends 
upon this view of the PEG, since a graphic representation of all the bindings is necessary if 
complicated references are to be accurately resolved. The global nature of the Access Graoh 
provides a natural environment in which to view structural flaws that cause access errors. 

Program Intentions 

Without a formal expectation of a program's performance, any debugging or understanding 
system will only be able to react to task-independent problems. The ability to match expected 
behavior to actual behavior will give a goal-oriented direction to debugging efforts. XREP accepts 
an intention string for exactly that reason. The string, a sequence of "observable" program events, 
is mirrored in PLX by a TERMINAL primitive which generates the "observable events." The system 
will try to match this output against the given intention. The intention string is not meant to provide 
a method for proof procedures; it is merely a tool to help the system produce more correct 
programs. 

The consfructs presented in this section are designed to focus on debugging and intentions, 
w'iile also raising several side Issues important to Automatic Programming. As representations, their 
adequacy can be judged only by the methods which operate on them. The next section will describe 
the interit and scope of those methods. 

1.4     DEIiUGGINC EXECUTION FLAWS 

The extensive preliminary discussion was intendeo to stress the environment concept 
fundamental to this report. The discussion of debugging will unify all the formalisms of XREP 
by providing a coherent model in which to picture the execution process. Figure 2 depicts XREP as 
two logical parts: a program executor and a program debugger. 

A SYSTEM MONITOR is responsible for executing the PROGRAM written in the production 
language. The monitor records the PROGRAM BEHAVIOR in the Process Elaboration Graph while 
checking that its behavior is consistent with the EXPECTATION, existing in the form of an intention 
siring. If a difference is detected, the DEBUGGER is called. The first step is to IDENTIFY the nature 
of the error. That involves both CLASSIFICATION of the problem, and an EXPLANATION for its 
existence.  Then CORRECTION can be attempted. 

-■       --   ..   . -^ . '*Mml   .1  -      - -- ■■-           -       .      .  -    . .. - .. 
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Figure 2.   Model of XREP 
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PROBLEM STATEMENT 

is associated with loop co >ol, and the last deals with pronomial references.   All four exemplify a 
position taken by   this system design: 

Many Automatic Programming trai .lation problems can be resolved  better  by 
studying dynamic behavior rather than a static description. 

The basis for this decision comes from the intuitive methods used to resolve the problems.   All seem 
to be naturally suited to execution analysis. 

Struclurnl Depfndrncirs 

Computer science has become very conscious of structured programming(iii), a concept which 
is important mairviy because it forces a programmer to design a solution to his problem carefully 
before coding it. The benefits of following the disciplines imposed by structured programming are 
numerous: the programs are easier to read, understand, and modify. These advantages are gained 
because of the modularity resulting from delaying /arious design decisions until necessary. That is, 
any "abstract level" of the program contributes only what it must to the overall design. English 
descriptions of process are notorious for doing exactly the opposite. Information is presented with 
no regard for the programming concept of structure. Neglecting elegance for the moment, Automatic 
Programming systems will have a difficult enough problem just in determining dependency issues, i.e., 
what data is required for a process to operate. A linear (i.e., nonhierarchic) representation of a 
process, coupled with a global data base, loses all the structure inherent in English. Again, the 
informality of English is to blame. However, the structure is there; otherwise anaphoric references, 
ellipsis, and ambiguity could not be viable communication tools. Automatic Programming must find 
that implicit structure to be able to write any program, structured or otherwise. The debugpng 
effort for these problems accentuates the help that execution analysis can provide. 

Consider an Automatic Programming system, structuring a process stated in English, trying to 
deal with a reference like "the next to last person." If this reference depends on the dynamic 
behavior of the program (as do most such references) the Automatic Programming system will have a 
hard t^me discovering, statically, whether at least two persons exist in the current context for that 
reference to make sense. This problem is the primary structuring issue. Assuming that the 
sequencing of the program is correct and two players do exist, its structure may present a context 
in which only one person is accessible during the "next to last person" request. In that case XREP 
will restructure it to make sense. The modification is made possible by the generic features of the 
variables and the history of the process maintained by the Process Elaboration Graph. The naming 
conventions imposed by typical programming languages are too rigid to facilitate this kind of 
analysis. In this example the problem is too much structure. A related case occurs when the "next to 
the last person" request succeeds, but points to the wrong person; this problem will be resolved by 
a similar analysis. 

(iii) See [DAHL 72] for a state-of-the-art discussion of this topic. 

8 

■   --■ ---   ■ ■ ■-' 



PROBLEM STATEMENT 

Lack of Strncturo 

The other structure issue appears when a program is running correctly, but is too linear; 
access to unneeded information typif es that flaw. That is, an event has more information than it 
needs to accomplish its task. The for,- of the generic data suggests a method of detection by having 
the system maintain a count of each generic type produced. If the associated maximum is known and 
exceeded, a problem of this type can be hypothesized. The position taken by the debugger is that 
an iterative process is a» faull. The debugging effort involves finding the iteration point and 
modifying it so that the overflow is correde ;. 

The impetus for handling this problem comes from future execution considerations. Later 
accesses to this data may be ambiguous because of the extraneous data. Also, this kind of program 
structure is not conducive to future modifications. Since the condition is detectable, fixing it seems 
appropriate. Mumans handle this situation by automatically maintammg contexts containing only 
necessary information. Unfortunately, this structure is not transmitted in their description of 
processes. Still, experts in venous fields have the ability to effectively manage their information by 
structuring it to ease future access to it. The debugging effort here attempts to do the same in this 
special case. 

Loop Contml 

Erroneous loop control is another "feature" of natural language. Examples will demon-.trate 
how humans determine iteration points dynamically from imprecise and ambiguous algorithms This 
problem will be viewed in terms of why it exists and how it might be resolved given the environment 
presented thus far. Only a partial solution will be offered, with no implementation, since a complete 
analysis of this kind of situation is the focus of other research projects. 

/Imhiffuou» Rofrrrnrrs 

Anaphoric references present the basis for the next analysis. Consider a reference like "the 
first one. Syntactic clues may not find the referent if the situation is ambiguous. English abounds 
with such constructs, forcing language translation systems to deal with them. The PLX generic data 
forms provide a natural Interpretation for this problem as an unknown type, while the intention 
string gives the capability to resolve it. The ease with which this can be done strengthens the 
position to delay binding decisions as far as possible. 

The class of errors reviewed in this section is not meant to be complete. They cover a 
variety of typical situations which arise when dealing with natural language. The formalisms attempt 
to simplify the manifestation of those errors, thus enhancing the ability to correct them. If tK.-se 
problems can be solved, the fluency gained in communication with humans will allow an Automatic 
Programming system to consider the program construction issue more directly. 
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1.5      PHILOSOPHY OF PROGRAM UNDKRSr/lMDINC 

Since program understanding" encompasses such a variety of efforts, a review of the intent 
Of this dissertat.on is needed. Rather than formalizing requirements which define understanding we 
have presented an environment in which understanding can be demonstrated. This environment 
includes several new constructs, whosf inclusion is justified by the resulting methods The 
advantage of this approach is also its weakness; the flexibility gained by having loosely connected 
formalisms prevents the consistency required for proof. Thus in most cases methods are heuristics 
while constructs are justified in order to promote a desired behavior. Not enough is yet known 
abou programming to impose enough structure to formalize Automatic Programming Yet useful 
results can be extracted if completeness criteria are not demandad. The environment concept 
occupies a rrvddle posit.on in a spectrum which nas batch comouting on one side and total Automatic 
Programming on the other. There is no need to sit at one end. waiting for enough progress to make 
the complete jump to the other. Th.s philosophy addresses the immediate applications made possible 
by Automatic Programming research. ^"«■u.e 
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2.     AN INTRODUCTORY EXAMPLE 

2.1     INTEST OF TilE E\ AMPI.E 

Dartir.Lr       J A     S ,Chap,er  IS  t0 intr0duce XREP and lts  formalisms  in the context  of  a 
m/thnl P   ;        t03 y5'S ^ ,he En5llSh Statement f0r tha, examPle wil1 disclose communication 
examl    ^ natural   language.    Sect.on   2.3   will   present   a   possible   program   for   this 
example    emphas.zing   spec.f.c   constructs   of   XREP's   production   language   suitable   for   these 

oZeTl        meth0dr/n  execut'on of }h'5  P^S-  * then shown via the  process  graphs. 
fonowed  by  a genera   cüscussion of how the intention string mechanism can be applied  to this 

for d^r h       80H J5.*0 Sh0W that the SyStern COnstruCts are b0th natura, t0 English and adequate for describing and debugging processes. ■«OH««"«» 

11 

2.2     THE ENGLISH STATEMENT 

Backgammon  a two-person game, is the setting for the example.   The rules for the Leglnnlng 
of the game are as follows: JB1"""^ 

Thfi Bam* Man, hy having varh player roll a di*.   Th* player with the larne« 
value makes the first move. 

This   example  has   several  distinctively  English  characteristics   which  are  ignored   by  computer 

hlTt5" LT   ^ d,SCUSSed here in terrriS 0f ,he En8lish' whil« ^ "ext section will review them in terms of their impact on XREP's production language. 

. ]be ^Sinning of the statement. "The gome starts by . . . ." introduces an immediate problem 
by implying ha the top-level structure of BACKGAMMON is the start followed by the rest of the 
Same, without danfymg whether the rest of the game depends on the start. Humans do not require 
explicit ins ructions to help make distinctions of this sort. However, if an Automatic Programming 
system ,s trymg to structure this process and the distinction is important, any tentative dec.^ on 

TH^O y 'I'    r5^^ Sh?,d ^ ;>imple t0 Und0 if pr0ven wr0n8-  *"*><>' reconstruction effoo? this common situation would be undesirable. 



AN INTRODUCTORY EXAMPLE 

a die- ^^^c::e^^:::^ud^ - trr-The f a:e se8men{ • • •each ^ ">m 
independent of the others    The evert c^n h* !r'S T^' *Me the action 0' each P'^r is 
overall action, i.e., the dferolW or !n L , T^t '" ^ leaS, ,W0 levels of abstraction, as an 

vew implies t'he ^^ encV ^"d^     b7e ^ "* "^ * ^   The fo-- 
retrieved only  by  a 'equest  Ch ch^ 
second line of the aame «id "Th. a

|
an0*ledges ,he 'dependent actions. For example, If the 

because the player fZertdoljlT Tf ^ ^ m0Ve'" an ambi8UOus ^n ari es 
Since no indi'duaTp aTer e ists m h t'rn r edSe ^ mUlt,pl9 "W™** of the die-roiling ün!t 
to the d,e-ro.l1ng SZ?^ ^^^nr^'—- ^ * ** ^ * revest 

anaphr::f:^^^ti^^^:!;;^te
n;0 T'^ me,hods ^piified ^ ^ 

by type and referenced by that type w'h !n lw ft? ^'l TyPICally' 'mfor^^ ** created 
some context, enough clues usually exisT to ^T* ^^ SinCe the data is created in 
this assumphon; the predTcate format ^ one wav « T"^ Anaph0ric reference is based °" 
this reference is also the one nece s 1 to J* ^ characteristic information.   The form of 
previous paragraph. The predicate ^'h^T" * CrPOnentS 0f the unit introduced in the 
tbe unit, format, thus distfnÄ^ "e^^^.;:; ■^^'^^'^ of 

progra^^^^-^^^^^^^o another ^^ ^™ ^ and 

parameter -passing mechanism to dent ^a procedure Ind^t Pr08ra7in
r

8 ^^ USe a formal 

it creater,  information as necessary   -xPX the m^ H    i ^ 8       ^ n0t-    lnStead 

context and "find" what they need    In the e ' L.  . ?r ^^^ to search their current 
of the die. The English desertion does no T ' 'H f;rst:m0ve; W*"'* * to follow the rolling 

than "the p.yer wittfthe l^es^vr^ec^t^st; .t:3*'" the ^ ^ * t0 USe 0^ 

to mod^:;; ^:;^^:^:a;: ^^^s ™;n any way-The des^de— 
a desirable feature for a target iZ.lV   >t A ^ presumPtl0n that "closeness" to English is 
modelling English, the Lg f , "^ 3^' l"8"^10^1^ jamming system. By accurately 
the manifestation of an er^relÄ W,th SPeCifyin« W™. *"* -king 
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AN INTRODUCTORY EXAMPLE 

2.3      /] Pl.X PROCR/IM 

intrnHFl^re ^ Sh0WS  a Pr05rarn  Wri,ten in  PLX which  rePresents the  BACKGAMMON segment introduced in the previous section. 

BACKGAMMON s- START , REST-OF-GAME 
START    := (GENSEQ PLAYER -> ROLLDlE) -> COMPARE 
ROLLDIE := (GENMEM DIEVAL) 
COMPARE !- (INSERT PLAYER.dMDEX MAX DIEVALU -> FIRST-MOVE 
FIRST-MOVE   :- (TERMINAL PLAYEP.-l 'MOVES') 
REST-OF-GAME :- . . . 

Figure 3.   Rules for beginning of Backgammon 

In order to ease the discussion, the production rules are simplified and use " " in place of 
program segments irrelevant to the discussion(l). After the first rule is initially viewed abstractly to 
explain the bas.c operations of production systems, all the rules will be inspected from two 
standpoints: their role in the program and their derivation from the English. 

A rule has three parts: a left-hand side, a rule separator, and a right-hand side. For the first 
production they are BACKGAMMON. ":-", and "START . REST-OF-GAME" respect.vely. The left-hand 
sides, also called nonterminals, represent the names of processes whose definitions are given by the 

RErSTe-SOF-nGAnMEri8ht'hand S,deS'   ^ BACKGAMM0N IS a Process made of ^0 parts, START and 

To start operation, the production system finds a definition for its distinguished beginnina 

BACKGAMMON" f T "fOT
BACKGA^0N- Once a definite is found, it is executed. So. to play 

BACKGAMMON, first START is executed, then REST-OF-GAME takes control. Notice that since START 
is also a nonterminal, the same process that was applied to BACKGAMMON is applied to START This 
recursive expansion of nonterminals stops when terminals are encountered(ii). 

The symbols between the events of the right-hand sides ("," and "->") have no bearing on the 
order of execution; control in XREP's production language is the same as that in standard production 
systems.   Their role will be explained shortly, during the discussion of the individual rules. 

The first production 

BACKGAMMON :- START , REST-OF-GAME 

(i) A complete definition of the language is given in Chapter 3. 

(ii) See [GINSBURG 66J for a formal view of   production systems (or rewrite systems as they are 
often called). 
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is  a simple  rule composed of two nonterminals   START anri RF«;T nc PAUC    I/UU-I    *, 

even, ]'Zf TjjZ'R^lTal^T I" 7^'°" '"'"■ 'he SC0,,e '" i",w'"a,i0" "" ■""* 

r=~e~HSS^^ 
in.or.e.ion can be made ^oL, or so»/d^l'nf o, TTA^  ^nr^ " «7-0^^^ ^ 

r'p;r;;ry of,hes^rn
s^:o;bo,h d'— ~- -" ^^X 

indt  endlnl "iMh».'«^'10';' ,,;le• "'" ,S h"'0,hes'2ed. """'"B 'hat START and REST-OF-GAME are 
indvendent.   If that assumption [s wrong,  usl replacing ",■ by "->• cdrrecls it   The smnllrit« nf fhi! 

aepenaencies   seem   to   be   determined   easily   and  dynamically   as   needed     This   sarm»   Hv/n«^ 

The second production 

START    := (GENSEQ PLAYER -> RQLLDIE) -> COMPARE 

fh^^rtr^GE^E^rATER-r^E;^';^, Er,gli5h ^'T"'' 'taCh P,ayer r0llS a die'" 

.ha, x^:: :h
cr;;ent

Th;h,c-:ort::ai:: r /r^ ^''vrs :ricf-i 

COMPARE exists  as  a  convenience  to distinguish  the  action of  rollinE  the  dice   from  fh- 

KÄ'u^inr "■'■■separa,es",rom GENSE '• COU™E --h- -«•'« ^ 

The third rule 

ROLLDIE :- (GENMEM DIEVAL) 

has an example of a simplified use of the GENMEM primitive.   Notice that the English did not describe 
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how to "roll a die," so inclusion of this rule reflects its need because of the action of the next 

of^theseTDIEVA^ CaSe, "^ Pr0dtJCti0n defines the R0LLDIE process as the generation of a member 

The fourth rule 

COMPARE :- (INSERT PLAYER.dNDEX MAX DIEVAL)) -> FIRST-MOVE 

represents the statement "The player with the largest value moves first." The rule contains the first 
example of a reference to a generic data type. PLAYER.dNDEX MAX DIEVAL) follows the general form 

n y>^P^Xp, Where "exp" lS some selector unction pointing to a specific instance of "type " Mere 
PLAYER is the type and (INDEX MAX DIEVAL) is the identifying expression. 

INDEX is a function which searches the appropriate GENSEQ structure in order to find the 
required item -- m this case, the largest DIEVAL Since each player is associated with a DIEVAL 
pointing to a particular one identifies the PLAYER who rolled it. The affect is like saying JOHN's 5 if 
5 is the largest die value. ' 

Once the appropriate player is found, INSERT sets him up as the generator of the FIRST-MOVE 
event.   In this sense it has the same effect as the compound event 

(GENMEM PLAYER -> FIRST-MOVE) 

The difference is that no new instance of PLAYER is created, an existing one is merely repositioned. 
anticipating future reference. So, if a descendant says "He moves ..." or "The last player 
mentioned," the identification of the referent will have a firm basis. This method of having 

UTMC^V'^ ^ their areüments is Part of a heterarchical system design espoused at MIT 
[MINSKY 72] and examined further by [WINSTON 72]. It proposes that "smart" systems should know 
how to find relevant information themselves. The strict hierarchy imposed by formal parameter 
passing methods is not natural to English. 

The next rule 

FIRST-MOVE := (TERMINAL PLAYER.-l 'MOVES') 

results  in  a terminal  output event.   That is, FIRST-MOVE produces a string like (JOHN MOVES) 
representing the end result of a process.  Another example of a generic variable, PLAYER.-l, occurs 

■   ♦ Si Ivtn AL eVent-   Thl5 time ,he Predicate refers directly to a position - in this case, the 
fll;; .R mentl0ned The ease of this access comes from the work of the INSERT primitive, i.e. 
INSERT remstantiates a type's value, while type.-l retrieves it. 

The intention string, described later in Section 2.5, is meant to match the composition and 
sequence of these TERMINAL events. By placing the TERMINALS judiciously, various levels of program 
detail can be revealed for testing or monitoring purposes. For now, the TERMINAL represents an 
explicit statement of the computation's status. 
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This section has viewed the production language in terms of the computing capabiii.ies 
necessary to write programs. The next section, in presenting the process graphs, depicts the 
production language as a vehicle for their construction. 

2.4     THE PROCESS GRAPHS 

l he structure which maintains a recorc! of a program's execution is called the Process 
Elaboration Graph (PEG). The information it contains and the form it takes were influenced by a 
variety of design decisions dealing with the production language, the generic data forms, and the 
debugging capabilities. Though reflecting all those issues infernally, the PEG requires another 
conceptual view, called the Access Graph, to help depict the spectrum of claims made for it. By 
presenting a view in which the production rules mamtam their original form, the PEG relates a 
program and its flow of control, thus becoming the focus of the debugging algorithms. The Access 
Graph, on the other hand, emphasizes data and scope issues by making nccess paths visually explicit, 
a feature not present in the PEG. Through the PEG is the only structure maintained by the system] 
the Access Graph exists to offer a more natural structure to view when access is discussed. 

Assuming the players are named Joe and John, Figures 4 and 5 picture the Access Graph and 
the PEG for the current example. The difference between them has an intuitive basis which will be 
reconciled later in this section. First, the construction of these graphs will be compared to the tree 
produced by standard rewrite systems in order to emphasize the role of the event separators and 
the form of the production rules. 
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BACKGAMMON 

START 

GENSEQ 

REST-OF-GAME 

I 

PLAYER.2^-JOHN 

ROLLDIE 

i 
GENMEM 

DIEVAL.l—1 

Figure 4.  An Access Graph 
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AN INTRODUCTORY EXAMPLE 

C BACKGAMMON 

START 

C 

REST-OF-GAME 

GENSEQ 

PLAYER.!—-JOE 

C 

COMPARE 

INSERT FIRST-MOVE 

ROLLDIE 

) 

J C ROLLDIE )    (PLAYER.1 = JQ?) (TERMINAL^ 

^   GENMEM  ^ ^   GENMEM ^ 

c 

(^"JOE MOVES'1^) 

DIEVAL.1^-3^       (mEVALJ^T) 

Figure 5.  A Process Elaboration Graph (PEG) 

XREP and Standard Production Systems 

The functional events, like GENSEQ, and the event separators make XREP's production system 
different from others, yet by treating the functional events as nonterminals (while ignoring their 
semantics) and by applymg one transformation based on the event separators, the rules can be made 
to look like those of other production systems.  The transformation is as follows- 

1.   Whenever "A 
and "B' :- C . . 

B -> C . .." appears in a rule, change it to "A := . . . B' 
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2.   Whenever "A :« . . . B , C ..." appears, replace it by "A :- ... B C " 

Applying these transformations to the BACKGAMMON game, the rules become 

BACKGAMMON 
START 
GENSEQ' 
COMPARE 
INSERT' 
FIRST-MOVE 
REST-OF-GAME 

START  REST-OF-GAME 
- GENSEQ' 
- COMPARE 
- INSERT' 
»   FIRST-MOVE 

A "standatd" execution of this program produces the tree structure shown in Figure 6. 

BACKGAMMON 

, 

START REST-OF-GAME 

I 
GENSEQ' 

I 
COMPARE 

I 
INSERT' 

I 
MOVE 

Figure 6.  A standard tree structure 

This traditional structure pictures an event's access path, the path from an event to the root. 
By containing all its direct ancestors, the access path becomes the environment in which each event 
carries out its task; in this sense it is like the control stack of traditional programming systems. 
Other than the expansion of the GENSEQ and INSERT, the tree in Figure 6 has the same structure ac 
the Access Graph of Figure 4. Vgt although Figure 6 depicts the context concept, the form of the 
transformed rules loses all the structural perspicuity inherent in those of Figure 3. The event 
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AN INTRODUCTORY EXAMPLE 

separators act as more than syntactic devices; they provide the interface which gives the production 
rules the structure necessary to model a process naturally. 

Though the Access Graph's construction follows easily once the convention of the event 
separators is known, by highlighting the access issues it distorts the relation between the form of 
the production rules ana the sequence of their execution. The PEG maintains that relationship, though 
at the expense of the access issues. Conside- Figure 5, the PEG corresponding to the Access Graph 
of Figure 4. Its main feature is its closeness to the production rules. In fact, if the event separators, 
encoded in the shape of the events, were ignored, the PEG would represent an implementation of an 
n-ary tree generated from a standard production system. For example, Figure 7 shows some simple 
rules from a standard rewrite system and its associated tree, both in a standard and implemented 
form. In the standard form each father points to all his sons directly; in the implementation of this 
kind of tree (since that is not a convenient form) each father points only to his first son, who in turn 
points to his right brother, with the rightmost brother pointing back to his father. 

/I\ 
BCD 

A 
B -»C -»-D 

X 
l\ 
X -^Y 

W w 
= BCD 
= X Y 
= W 

Figure 7.   Rules and trees from a standard rewrite system 

The difference between the implemented n-ary tree conceptualization and that of the PEG ie 
in the access path. In the former case the path is constructed by visiting all the father nodes, i.e., go 
right until an "up link" to the father is found. However, that method does not work for the PEG 
because of the interpretation the event separators impose on the rules. Instead every left brother 
is visited (hence the two-way links) and inspected to see if it is in the access path. An event's 
inclusion depends on its shape, rectangular if a "," follows it, or oval otherwise. Basically, a 
rectangular event means it is protected, an oval event means it is viewable. Thus, the method to 
determine the access path in an PEG, trivial to define in an Access graph, is to (1) visit the left 
brother, (2) if it is oval (i.e., viewable), it and all its descendants are included; if it is square, the 
event is protected and not part of the access path, (3) if a leftmost node is encountered, move up to 
the father and continue from step 1. This algorithm produces th-: same access path that can be read 
directly from the Access Graph, with the join in the Access Graph corresponding to the viewability 
of the GENSEQ node by COMPARE in the PEG. 
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PEP    Th! ^l!0^0f '^^M Pa,hS iS CruC';,l ,0 understandin8 ^e duality of the Access Graph and the 
manmna    l !' aCCeSS Pa,hG defineS * U^e tree'   The PEG' u"der th^ «cess path 
mappmg,   thus   represents   one   and   only  one   Access   Graph,   i.e.,  the   Access   Graph   is   just   a 
econ 18urat,on of the PEG   Both exist to focus on different aspects of execution e.phas zed by   hi 
epor .     For  now  th.s  mtu.t.ve  concept of access paths will suffice, Chapter  4 will detail this 

lupic Turtner 

l.anpruaffp Impnct on ihr Prorosx Gmiilis 

or ,Sev
rf
ral'an5^5e claims madö in the previous section have a visual effect on the process 

gr.phs.   Consider  the  GENSEQ structure as an addressable unit with independent  branches    The 

GENSmn3 H tH^p'^ ".f ^ and al1 'ts branches because of ^ "iewabi ty of Ihe 
,n COMPARP '"H T ^ ^ SrPle 0b?ervatl0n that the A"ess Graph has the GENSEQ structure 
in   LOMPAREs  direct  ancestry).   But   an event  within  a  particular  GENSEQ branch  (RQLLDIE   for 

ITetlVr    ^T ^K?" branCheS- The Acces& Graph mere^ ma^each branch separate 
ThJ ?n n      H    T        ^ branCh fr0m ,he 0therS by makme the bindings rectangular.   Notice tha 
the jom in the Access Graph (after the DIEVAL's get bound) is conceptual in the PEG, reflected oNy 
by the viewability of the GENSEQ node. y 

ar.nh ^T^T' "^ ^^ ir0m ^neraU^ ob>e^' ^o contribute to the visual impact of the 
!tr?sdno Vh! add'e:S,nS mfNanisms force the spatial positioning of the data within the graph, 

whe e if 0ote/mP0 c! 0 'T1"5 n0t 0nly What Value an 0b^ct has- but k^ing when and 
th.pL,- f V! Sau m0delS alS0 have ,hlii Inf0rmati°" »hough only for a current branch of 
the execution), but generally make it directly available only as a debugging tool. 

"PLAYE^r inF'Xa?le   I. lu" Jrr55   m"UeMCe   iS   in   the   ^introduction   of   the   binding 
PLAYER.K-JOE   underneath the COMPARE event.   By anticipating PLAYER.-l requests, the graphs 

exoectTTh *, em";0nment i0r future events s0 ^ th.s specific information is «T™ they 
expect it.   This implementation supports the English which is likely to follow in the example: 

". • • The player with the largest value makes the first move   He 

Given no other information. PLAYER.-l is a likely translation for "He." The graph is ready for that 
assumpt.on by supporting the kinds of relative addresses used by English. 

KflviPw of the Process Cm/j/is' Features 

whv thP. 'n;°;mal disc
k

usfiün °f the process graphs was intended to give some overall feeling for 
why they ex,st and what information each purports to carry. The following features, used to 
evaluate a process representation, act as a summary for this section by reiterating the main issues. 

•        The representation presents a dynamic view of a process. 
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AN INTRODUCTORY EXAMPLE 

wht d2.r5,:Lr„;zV™Xpr°s;':.r r;p:r,s ;vhe d— -—^w ,„d 
only the contsxlual information wh cVis noceiat t, . -  """"^ i5 reqlJ'red' t0 *m ""< 
.n-o^ation to help d8bu68,ns ,n ^* Z^Z ^S^'^lZ'^^ ^ "*< 

A spatial view of bindings is emphasized. 

The  flexibility of the "tvnpovn" ^,f, <„ 

Process repr'esentaHon'To separate the" ö2T0 ^ the da,a appear dynamica^ *™* the 
information loss and an unnatura rom he ^andoolt nf^^M0" P0,nt "" 0nly lead to - 
Process.  Both the Access Graph andS^ of the binding 

• The process representation should be easily modifiable. 

^^^-z^^^zr Tilms drast,ca,,y-—*-"*• 'n to the next one: mentation should be amenable to such changes.   This concern is linked 

• The process representation should m.rror the corresponding program. 

This  condition is the  main claim  marie  far tu* ocr 

Process the manifestation of an e" is o t n e y ^o de ^t P:0?UC,i0n langUaSe- '" ^^ * 
error can be difficult.   An analysis of the PEG dunnVn t        ' as^^ responsibility for that 

Common ancestors can easily be found often ninnowÄ8'"8 "^ ^^ mVOlve d,SJOint bra"ch«- 
thus the production rule involved. T eVio^c«; esTo HL K'^^ reSp0ns,ble for ^e error, and 
PEG makes this information both f ndabVand usabTe ^ the Pr0ducti0n rule£ and the 

2.5 STATING EXPECTATIONS IN PLX 

detail A 'Z^^^ZZZZtZTZ™ " ^'"^ *°° ^ 
and depth of such attempts sugseel that H^ZZlL Lt '! debu881^ programs.   The diversily 

Prove that a program ,s JorrecUhe   e  i auTp   d tlof sho^ ""'T^ Eve" in "^ to 

tor rigor. MfJ"ea ror Proof should depend on the user's iudpmpnt judgment 

components, how many checkout attempts have been m?!116"1   'he   "''*'  ,s  <"   "''»"  P'Ogram 

be considered statements of e«pectationPs,;Mh?BACKSMMotpro::armPle' '" ^ ,°U°*'m* ™ 
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AN INTRODUCTORY EXAMPLE 

1. (The program halts} 

2. (The MOVE event is entered) 

3. (JOE MOVES 3 AND 1) 

4. (JOE MOVES) 

5. (JOE ROLLS 3) (JOHN ROLLS 1) (JOE MOVES) 

6. ^GENSEQ entered) (COMPARE entered) (MOVE entered) 

All are valid expectations and can be useful at various phases of the program's development. The 
second might correspond to a state where the start of the game is considered checked out, while the 
fifth represents a full observation of the external events. The point is that any level of detail should 
be possible for stating expectations. 

The system supports this position by providing a TERMINAL primitive for this purpObe. The 
sequential collection of TERMINAL outputs constitutes the list which must match the intention string. 
In Figure 3 the rule 

FIRST-MOVE := (TERMINAL PLAYER.-l 'MOVES') 

has this TERMINAL event. An intention siring for this program segment would therefore be (JOE 
MOVES).   If the intention string is to be (JOE ROLLS 3) (JOHN ROLLS 1) (JOE MOVES), then the rule 

ROLLDIE := (GENMEM DIEVAL) 

could be changed to 

ROLLDIE :• 

Again, the level of detail depends upon the placement of the TERMINAL events 

(GENMEM ClEVAL) -> 

(TERMINAL PLAYER.-l 'ROLLS' DIEVAL-l) 

By treating expectations this way, XREP can be used as a parser; the intention string is the 
input, the TERMINALS guide the parsing. The production system is, of course, a perfect vehicle for 
carrying out this analysis; many production systems are used in some kind of parsing operation. The 
nondetermimstic behavior of a production system finds a successful path though the rules, while 
masking false attempts. 

Another observation about the intention string mechanism keeps it in proper perspective. The 
ability jo state program expectations is a tool to aid in verifying programs, yet the intention string 
has a "test-case" flavor with little formal basis. As a result, when a program ma. ties a particular 
string, little more can be said other than the program matched that particular intention string. While 
certainly no basis for proof, a successful parsing does have some measure of correctness to it. 
Dijkstra said that this process "can be used to show the presence of bugs, but never to show their 
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AN INTRODUCTORY EXAMPLE 

absence!"(iii) Though true, that statement does not reflect how useful that detection can be in 
debugging errors. Formal proof methods give few indications as to the cause of a failure when one 
is detected. As will be shown, the intention string mechanism provides a good environment for 
detecting and correcting bugs. 

2.6     SUMMARY 

By analyzing an English example from .., tomatic Programming viewpoint, several situations 
unique to natural language and traditionally ignored by computer systems have been uncovered Not 
only are they a basis for XREP's language and constructs., but they also represent the focus for the 
debugging algonthms. The Automatic Programming paradigm offers both a new framework in which 
to address representation issues and new criteria by whieh to judge their adequacy This 
dissertation points to human communication methods as a source for its language representations 
while claiming that close modelling of natural language problems plus the ability to resolve them 
meuaSUrv0l

nn rePresen,atl0ns' adequacy and worth. The hypothetical role of Automatic Programming 
makes XREP theoretical and open-ended; as a test-bed for representational ideas, XREP can ignore 
the severe problems associated with producing a "closed" system. The results of succeeding 
chapters should be viewed in this light. 

I 

(iii)   O.-J. Dahl, E.W. Dijkstra, and C.A.R. Hoare, Structund Programming, ed. by C.A.R. Hoare (New 
YorkrAcademic Press), 1972, page 6. 
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3.     THE PRODUCTION UlNCUnGE - PLX 

3.1     PRODUCTION SYSTEMS IN GENERAL 

^»1 der"^0"J> a computer program from an English statement by Automatic Programming 
systems requ.res a d.vers.ty of exPert,se which starts with understanding and representing natural 
language .nd concludes w-h debugging and proving the correctness of the generated program. 

system inifthl0,^ ^ l^ '"^ ir,teractive environment, then both the Automatic Programming 
system and the user must have a target to provide direction to any discussion.   That target is the 

S.alogue S Sener   ^ ^^ fhe Pr0grammi,18 lang-Se is the vehicle of the process acqu sit on 

l.na, J^  ^^^H'6 0f 0Ur  Pr0grammi,1S  language, PLX, thus  rests  on  its  central  role   as  ;he 
language m which the user s program (after translation) is stated and the system's understanding is 

Pr^ert.  s'o   n^l5, na;ijräl ^   " ^ deC,Sned ,0 refleC, ^ handlinß 0f VariableS *** ^* propert.es of natural language in a maintainable manner, and to address the computing ,ssues which 
anse   m   understanding   programs:   what  computer   resources   are   needed   during   execution    how 

^'s rame:^)    reCOrded• *"* ^ ^ ^^ "" be USed t0 deb^ ,he P^Sin th^ 

Although   our   main  concern   in   this   report   is   with   the   automatic   derivation   of   computer 

thelTn nat"':1 lanSUa5e ^^^ We mUSt f™ devel0P a detailed understanding^ how 
Iror!«    ^r5 W"; be;eP'-esented *"* h^. as we will show, this aids in the automatic derivation 

fZuZ I , T I .PLX ,hlJi dePendS n0t 0n h0W Wel1 '♦ COmPares ^ «'her programming 
Sd h 'th . r Wf' i reSPOndS ,0 the exPressiveneSs of English and the functionality questions 
PLX concent ^T ^^^ ^erat°r and ^^ugger. The first step in our evaluation of 
KLX concerns the decision to make it a production language. 

Psyrholoffical ConsiJrrntions 

H^ci.n       t.aCqU'S 0   kn0wled3e from human protocol presents psychological considerations in 
designing the appropriate model for that information. Justific.ion of PLX as a production system on 
such grounds can only be hypothesized by investigating other works whose primary task was the 
actual use of such protocols. 
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THE PRODUCTION LANGUAGE - PLX 

       I"   their   study   of   human   problem   solving,   Newell   and   Simon   theorize   that   Ih.   „..   , 
organ.zahon o. human programs closely resembles a production system organi^lion.  As they 0^ 

In  a   production  system,  each  production  is   independent  of   the  others   -   a 

ÄslÄ ^^.rpri^ ÄÜTo tTT' 
^^Z-ZrrX^^^ .0 be 

tWal or,ohl.C!!0.1l ",emSe"'eS SSe" ,0 ^e,J^eSt'", "ea™nS,ul components of  the total problem solvmg process and not just odd fragments.(iii) 

^frZ^T^mSZ^Tr:''":he .'orm °''produc,io"'"" ■"*""<■**' "^™"« 
'V^canuseVÄ^r^^^^ 

='n^o;riror:rro; b^ 
derived by the subiect    Th« 1^!    > 1* e    the acc'u,sltion of a "ew piece of Knowledge 

5ySte.s re^anÄ 'i:z^^z^^rzz\'xr" "°d""L 

a^=th.Ihs
e

tud?wDhth^«srVpSo^N
SvS

9
ti ^«T 711 ^^^721  among  others,  is 

origmeifyhandcodedtotd   oge ^"em,   rerrtr Let f ^  heUriS"CS WhiCh Were 
a production system as situatiorLrL« ,. cnemisIry exPerts.  Later, these ideas were encoded within 

flexibility Ba.rdtus^V^S^s ad:::^0:'"     "^ ^ ^ ^ ** ^^  The 

O^A. Newell and   H.A. Simon. //„maH pro6/<,m Solvi^ New Jersey: prentice.Hal|i 1972> pg 

(ii) Ibid, 

(ill) Ibid. 
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THE PRODUCTION LANGUAGE - PLX 

ayÄ! t^   tl,
he0ry',,hen'  invol^s   "ttle  actual   reprogramming.    This   allow. 

LTrph   ^^ brarr,ed 0Ut With different Versi0ns 0f the theory. a very useful 
feature when dealmg with a subject as uncodified as mass spectrometry.(iv) 

DENnRl,*^0™110 ^r0SraTminS P,0blem ,s similar t0 the Protocol analysis of PAS-II and the 

i e X  np ?^ Th^r    e t  f ^ 0r,S;nal ^ " StartS With and ,he ^* of ^ ^^d product, 
n!lnr? !     ^^ 0f a pr0cess whose structure must thereby be inferred   Bv dealL with 

abovi :üo^i;n!i^i^r ^^^r;süa8e for diaio^e -de^Th- ^ 

Functionnl Comtidorni ion.« 

fh«   .Jnw6 pSychc;l0gical hypothesis of the last subsection was meant to give some intuitive basis for 
the   production   language  of   XREP.    The   functional   considerations   have   direct    mpact   on   thi 

a:: y" 'rar^errdo'^^^/r: "^^  By iSOlating a pVrrsegrnH i   w "y ^ c 
I     P-^ty^pro^tion0::;;".^^to work-severai ^ *™ *™ —^ ^™* 'f ^ 

reorJenuL'^V0' ^flj ^ ^rru^ of heuristic£. Waterman used production rules for 
from thr    8ft '    aim,n8 that thiS rePres8ntation technique "permits separation of the heunst cs 

I" e e s?r:cr:;:t
aHs clear ffication of the individuai heuristics' ^^^ 

rules^nt;"?:e::breTo%na,y'is"5     ^ " "^ ^ ^ ^^ by ,he pr0duction 

work  ^l^f'"  pSt!m Tenti0ened in the Previ0us subsection is the vehicle for Waterman's latest 

rutoltfcÄhav^X0:' fy•"'n■,, : Wh;Ch Pr0dUCti0n langUage pr0gra- are mod ed 
[WATERMAN 7/l 1«? £ y "^ B!nPra,e and mSert new Prod^tion rules as learning takes place 
LWATERMAN 74].   Again, the nature of production s/stems aids his analysdS. 

ArJifi^M^n^"3"' G-L; Suther,and' and E-A- Feigenbaum, "Rediscovering some Problems of 

Me 1^ Jntn rh6 'Jp?.00"*^ 0f 0rganiC   Chem,stry-" W«cW"« /m«WW« 5. Ed   by B Meitzer and D. Michie (Ed-nburg: Edinburgh University Press), 1969, pg. 274. 

^^irs^r'ra^tr^10^"^65 for Autom8tin8 the Learnin8 of Heuristics-M 
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THE PRODUCTION LANGUAGE - PLX 

A different study used a production system to represent inference rules for natural language 
relations [LINGARD 72]. Lingard ar.d Wilczynski used a Backus Normal Form (BNF) representation for 
stating the infraction between relations.   Thus a rule like "GF -> F F" could represent the fact that 

f^M^r ilr (GF) iS the father {n 0f the fa,her- Their sys,em could acceP^ requests like 
MnSrJ?! and deduCe lts truth by usin8 the grandfather rule, and the two assertions 
(JOHN F FRED) and (FRED F JOE). By representing the relation interactions this way, a uniform 
parsing algorithm could be used to carry out the analysis within an associative data base. In his 
Ph.D. dissertation Lingard continues that investigation [LINGARD 75], 

vDC
The inspectability and accessibility of production rules are the main issues of this discussion 

fXREPs debugger is to function effectively, it must work on a representation that is responsive to 
the requests which might be made of it. In Chapter 5, the scope of information needed by the 
debugger will emphasize these points. 

Other functional benefits of the production language will be discujsed later in Chapter 5 and 
Section 3.5 when enough of XREP has been detailed to adequately state the claim. The rest of 
the section is devoted to PLX, its environment, terminology, and primitives. 

3.2     THE PROGRAMMING ENVIRONMENT FOR PLX 

The production language character of PLX comes strictly from its contrjl flow behavior The 
design of its other facilities was influenced more by the environment in which PLX was programmed 
than by classical production language issues. To put the capabilities of PLX's primitives in the 
proper perspective, that environment will be described first. 

rpAi7rD
RE7P  iS   Written   'n   INTERLISP   ,lsing   the   data-base   extensions   of   the   API   language 

BALZER 74a].   API, a LISP-based pattern match-language of the PLANNER(vi) generation, is tailored 
for the Automatic Programming projec' at the USC Information Sciences Institute.   The properties and 
pecuhanties of API will not be detailed here; only the facilities borrowed from it will be considered. 

The data base is associative; information is stored as tuples whose first item is the relation 
which associates the others, in either a positional or keyword manner. Any item of a tuple, including 
the relation, can itself be a tuple. Neglecting the question of variables and literals for the moment, 
all the following are legitimate entries: 

(FATHER FRED BOB) 

(BETWEEN BOTTLE (CHAIR TABLE)) 

(PARAMETER ROUTINE A B (C D)) 

((COMPOUND RELATION) X Y) 

(KEYRELATION (KEYWÜRD1 X) ^KEYW0RD2 Y)) 

(KEYRELATION (KEYW0RD2 Y) (KEYW0RD1 X)) 

(vi) See [BOBROW 74] for a review of this generation of Al languages 
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THE PRODUCTION LANGUAGE - PLX 

The Isst two are equivalent examples of keyword tuples. The ambiguity of which type of relation is 
which Umce they all look the same) is resolved by forcmg each relation to fall into disjoint classes, 
either posit.onal, keyword, or function (described below). So, in the examples, if KEYRELATION is 
declared keyword, the last two tuples are the same. If KEYRELATION is positional, then they are. of 
course, different. /      *, »> 

Each tuple is assigned a unique name and stored in a named context given in its assertion 
Ihese contexts can be hierarchically organized tor retrieval purposes and are under user control 
I he contexts effectively segment the data base into isolated sections, while the context hierarchy 
joins the sections as the user wishes. 

Another important feature of API comes from allowing i:s predicates and patterns to consist 
Of an arbitrary mix or LISP functions and API expressions. For example, FS* is an API function 
whose form is 

(FS* <variable> <pattern>) 

This function matches the pattern, but returns the value of the variable mentioned. 
FS* acts as a selector function based on the variable in the pattern.  Thus 

(FS* NUMBER (AGE NUMBER BOB)) 

In this sense. 

says to find a NUMBER such that NUMBER is the AGE of B03. If the retrieval is successful, NUMBER 
is bound to the desired value, which is then returned as the value of the FS* expression If the 
retrieval fails, the returned value is NIL, the false atom of LISP. 

Another possible expression is 

(FS* NUMBER (AND [WIDTH NUMBER B0ARD][GT NUMBER 10])) 

whose interpretation is to find a NUMBER larger than 10, which is also the WIDTH of a BOARD This 
example shows a mixing of an API expression. (FS* . . .), two LISP predicates, (GT . . .) and (AND ) 
and an API tuple, (WIDTH . . .). This marriage permits a great deal of power and convenience by 
allowing the user the expressiveness of both systems without restricting him to either 

3.3     PKEUMIN/IKY TERMtNOIMY 

The following terminology appears throughout the description of PLX. Though some of the 
terms nave been used before in a loose manner, they will now be linked more closely to the 
production language. 
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THE PRODUCTION LANGUAGE - PLX 

An event is either a simple or a compound event. 

• A simple event is an atomic element to be used as a nonterminal. 

• A com,,onnd event is either (1) a parenthesized expression whoje first element is a 
system primitive or (2) an expression with events separated by "," or "->". 

A node is either a simple event, a type 2 compound event, or the result of executing a 
type 1 compound event. It has the following properties: (1) it can only have one 
ances.or and (2) all generated offspring must be new nodes (henc* no loops) 

A typed vnnMe is a type together with an identifying expressicn (separated from the 
type by a ."). The expression can be either a generation number or a function which 
points to a particular binding -- for example, PLAYER.l, and PLAYER.(INDEX MAX DIEVAL) 

A aenerniion numhrr is an integer which identifies the relative position of a variable 
type in a particular path from a point in the generation tree. 

PI AVF^'iS P
f
LAYEfR"2(u

de!in!S ,the 5eCOnd Player mentioned from some point, while, by convention, 
JllTu      re        t0 the laS, player inserted int0 the PEG' PLAYER.-2 to the next to last playe-, and so forth. 

• An access path from an event in the tree is the 
r.odes up to the root. 

unique ancestor chain of events and 

pnvirnll^I'r8 ^ f V^l "" referenCe durins its e*ec^°". the access path becomes the environment for any evaluation done by the event. 
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THE PRODUCTION' LANGUAGE - PLX 

3.4      PL\ PRIMITIVES 

The current version of PLX has six primitives whose syntax and functional behavior will be 
Riven here in an informal manner. The next section will give a formal description of each primitive 
showing its effect on the PEG, while at the same time describing how the event separators cause the 
primitives io interact. 

The form of a production rule is: 

<parprt-fJef-name> := <event> [{,!->} <event> ] 

In other words, a valid rule is one whose right-hand side is one or more events separated by "," or 
"->".   Besides simple events (i.e., nonterminals), an event can take on any of the following forms: 

(GENMEM type API-predicate next-event) 

(GENSEQ type API-predicate next-event) 

(COND API-predicate) 

(INSERT type.APl-expression) 

(TERMINAL API-expression) 

(FUNCTION API-expression) 

The GENMEM event given by 

(GENMEM type API-predicate next-event) 

binds a local variable, making it the "generation" point for "next-event." The value of the variable is 
chosen from the global data base by the API request 

(LOCAL (ENTITY) 
(MATCH (AND   (AMO ENTITY type) 

API-predicate ))) 

LOCAL is an API function which creates local variables -- in this case only ENTITY. MATCH is 
another API function which tries to match the pattern given — in this case 
(AND (AMO ENTITY type) API-predicate). The pattern's interpretation is to find an ENTITY such that 
ENTITY is a member of (AMO) the set "type" while also satisfying the API-predicate. The presence 
of the API-predicate, ignored in the example of Chapter 2, acts as a filter between the data br-se 
and the potential values.  So, for example, if the data base has the following assertions: 

(AMO 1 DIEVAL) 
(AMO 2 DIEVAL) 
(AMO 3 DIEVAL) 
v'AMO 4 DIEVAL) 
(AMO 5 DIEVAL) 
(AMO 6 DIEVAL) 
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THE PRODUCTION LANGUAGE - PLX 

then 

will pick any of the DIEVALs, while 

(GENMEM DIEVAL T (-> NEXT)) 

(GENMEM DIEVAL (EVENP ENTITY) (-> NEXT)) 

will consider only the values 2, A, and 6, since EVENP is a LISP predicate which tests for the 
"evenness" of a number, in either case an appropriate DIEVAL is chosen and assigned to DIEVAL.l if 
this is the first DIEVAL to be bound, DIEVAL.2 if this is the second, and so on. Execution of NEXT 
follows this binding process. 

The effect of the GENMEM statement Is to produce a variable which is local to the current 
path of the program. In many production systems, all actions depend on a global data base; there is 
no notion of local variables. In PLX, the typed variables, as generators for future events, act as 
locals, a feature which gives XREP the capability to contend with questions about data structuring. 

Once the binding takes place, "next-event" is executed. If some failure occurs later, 
backtracking may return processing to the GENMEM for selection of a different value, making 
GENMEM a "choice point" in the execution of a program. 

The GENSEQ event given by 

(GENSEQ type API-predicate next-event) 

has the same action as a GENMEM event, except that all values of "type" which satisfy the 
API-predicate are chosen, each of which is to be followed by "next-event." The effect is like having 
n independent (i.e., no interaction) GENMEM events, where n is the number of values which pass the 
API-predicate. The GENSEQ is not meant to model a loop, but instead models a structure of disjoint 
actions which would otherwise be difficult to represent. 

(COND APl-pred) is a predicate event which acts as a filter to the current production rule. 
When a COND event is encountered, it is evaluated. If its result is NON-NIL, the processing proceeds 
normally. If it results in NIL, then a FAILURE is detected and processing backs up to the last choice 
point: a GENMEM or a rule choice (to be explained in page 43). 

If COND is the first event on the right-hand side of a production, the effect is very close to 
the situation-action pairs of the production systems found in DENDRAL and PAS-II, or the 
pattern-invoked procedures of PLANNER. That is, a rule is chosen and acted upon if the situation 
(COND) matches.   The generality of API-predicates gives the COND event arbitrary testing power. 

(INSERT type.exp) is an event used to "find" a specific typed variable bound in a preceding 
event and to reinsert it into the local context. A GENSEQ or GENMEM must be an ancestor of the 
INSERT and the search for "type.exp" must be successful.   The expression "exo" is arbitrary and 
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n,U«Lhr,aVe  a Valid in,erPretalion
) i-e-, it must point to a specific bound instance of  "type." If no 

PLAYER has been bound in either a GENSEQ or GENMEM, then 

(INSERT PLAYER.<anything>) 

is erroneous.   The effect of the INSERT is to reinsert the typed variable into the PEG (without giving 
it a new generation number) for future references. 

(TERMINAL APl-exp), by evaluating APl-exp and "outputting" the result, acts as the program's 
interface to the outside world. If XREP is in a monitor mode, then the collection of TERMINAL event 
computations, in the order of their occurrence, must match the given intention string. 

(FUNCTION APl-exp) evaluates APl-exp for its effect only. Since the control structure of PLX 
includes automatic backtracking for certain failures, the effects of FUNCTION may need to be undone 
However, due to the anticipated frequency of FUNCTION events, state saving prior to execution may 
be impractical. The solution involves the use of API contexts and a policy decision. Each FUNCTION 
statement is given a new API context, linked hierarchically to existing ones, in which to make any 
new assertions that affect the state of the world. If this event is then to be eliminated by 
backtracking, then XREP needs only to remove its context from the hierarchy to undo all its effects 
As long as the event has not changed any globais, its removal will be clean. 

.1.5     FORMAL DESCRIPTION OF PLX 

A formal description of PLX will be given by first viewing abstract productions and the 
evaluation environment created by the event separators, next reviewing the control flow of tho 
production language, and then showing how each primitive maps into the PEG. When the semantics 
of PLX are defined in terms of the PEG, the description of the language becomes operational, giving t 
firm interpretation to any construct while also making any structural changes to the PEG during 
debugging immediately relatable to the language. ng 

/Ihstrnc.t Productions and Event Sapnrntors 

The right-hand side of a production was shown to be a sequence of events with event 
separators, either "," or "->", between each pair. The event separators affect the evaluation 
environment of any event, a concept to be detailed in Chapter 4. Now they will be analyzed for 
their impact on the PEG and Access Graph only. 

Figures 8 and 9 show the simplest rules involving an event separator.   In Figure 8 the "" 
between B and C means that B is protected from C, reflected in the Access Graph by having B and C 
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on separate branches from A, and in the PEG by making B a rectangular event(vii). The evaluation 
environment for an event consists of the global data base plus all the information in its access path. 
In the Access Graph an event's access path is obvious, consisting of all events "above" it. In the PEG 
the access path is not so clear, since each right-hand side produces a single level under its father; 
the structure explicit in the Access Grapn is implicit in the PEG. Chapter 4 will show how to derive 
access paths from the PEG. For the purposes of this chapter, look at the Access Graph when this 
information is necessary. 

In Figure 9, B is viewable to C, because "->" separates the events. Thus C is under B in the 
Access Graph, and B is oval in the PEG. This configuration means that C has access to everything 
generated by B, a situation which is obscurea in the Access Graph, since it looks as if B has already 
done its work by generaiing C. However, the PEG clarifies this misconception by showing that B can 
still generate information, since it is currently an unopened leaf of the tree. 

A 

A 
Access Graph 

© 

PEG 

Figure 8.   A :- B , C 

Access  Graph PEG 

Figure 9.  A :- 3 -> C 

(vil) Since the rightmost event in the PEG has no "brother" successor, its shape is immaterial. 
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Fl8ures 10 through 13 show all the possible productions with three events in the right-hand 

TH TU   rnc'   Ap'ain n0tiCe '" the PEG that 0ne Production rule results in one level under the 
rather. The PEG construction for a production is trivial; write down all the events, if "," follows one 
make it rectangular, otherwise make it oval (this accounts for the fact that the last event is always' 
oval, since no event separator follows it). The construction of the Access Graph is not so obvious, 
though still not difficult.   The algorithm is as follows: 

1.        Write   the   first   member   of   the   right-hand   side   under 
nonterminal. 

the   left-hand   side 

it ii 
I   f 

2.        For each successive (event-separator event) pair, if the event separator  is 
then write the event down as a new branch under its predecessor's father; if the 
event separator is "->", then write the event under its predecessor. 

For example, in Figure 12, B is written under A according to step 1. Next the pairs (-> C) and {, D) 
are considered in order as stated in step 2. Since "->" precedes C, C is written under B. Then, 
since "," precedes D, D is written as a new branch under the father (B) of its predecessor (C), 
resulting in the desired tree. 

A 

/l\ 
B        C D 

Access Graph PEG 

Figure 10.   A := B , C , D 
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A 

I 

I 
Access  Graph PEG 

Figure 11.  A :- B -> C -> D 

A 

I 
B 

A 
C       D 
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Access  Graph PEG 

Figure 12.  A :- B -> C , D 
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A 

A 
B C 

Access Graph PEG 

Figure 13.   A := B , C -> D 

^      J?8^65 '1IC,ure ,w0 Access Graphs stil1 ^accounted for.  Conceptually, they can be 
thought of as representing the production rules given in their associated figure. However no 
configuration of the PEG can account tor the parenthesized expressions (B -> C) or (3 , C) called a 
type 2 compound event in Section 3.3. while still maintaining the conventions that each production 
adds just one level to the PEG. The problem is fortunately not important and is circumvented by 
forcing rules like ' 

to be rewritten as the pai 

A := (B -> C) , D 

A :■ temp , D 

temp := B -> C 

This transformation has no substantive effect other than to add an extra nonterminal in the Access 
Graph and mtroauce another level in the PEG. For this reason type 2 compound events will not be 
considered further. 
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A 

A 
B C 

D 

Figure 14  A :- (B , C) -> D 

A 

A 
B D 

Figure 15.  A :=» (B -> C), D 
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GENMEM 

1 

type.n val. 

next-event 

{       GENMEM     j 

Q type.n val 

(next-event ) 

Access  Graph PEG 

Figure 16.  Graph structure of a GENMEM event 
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PEC Mapping of Pl.X's Primitives 

The GENMEM event given by 

(GüNMEM type APl-pred next-event) 

produces the structure shown in Figure 16. The generation number n assumes that n-1 occurrences 
of "type" exists in the access path of this GENMEM. A member of the set "type," "vali" satisfies the 
APl-pred. if no type is found, then this event fails, leading to backtrack. If a GENMEM is backed on 
to, a new value of "type" is picked. 

The GENSEQ event is given by 

(GENSEQ type APl-pred next-event) 

results in the structure of Figure 17. The generation numbers start at n, as in the GENMEM event, 
and end at n+m-1, where m is the number of the vali which satisfy the APl-pred. The bindings are 
rectangular, since each branch is to be independent of one another — a situation visually apparent 
in the Access Graph. 

The INSERT primitive given by 

(INSERT type.APl-exp) 

has the simple structure of Figure 18. The form "type.number-value" reflects the generation 
number and the value of the found "type." If type.APl-exp does not point to a unique binding, this 
statement fails and backup takes place. 

The TERMINAL primitive given by 

(TERMINAL APl-exp) 

is  seen in  Figure  19.   The "result" of evaluating APl-exp is inserted into the PEG for future 
reference. 

The other two primitives, FUNCTION and COND, add nothing to the PEG other than their mme, 
since they exist for their immediate effect only. 
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tl- PEG. canerihl'crRVNTrrrr'-n^05";^^ r0CUSeS 0n the ,,,ef,m0st" un0Pened ™* " 
not yet been e ' ^^0 3 P1 f, ■tUn0Pe;e' :,eanS ^ the ^^ is a nonterminal wh.ch has 
vDrD

y!L°        exPandec< 0   a PLX primitive which has not been executed.   In the nnnt^inai ™ n executed.   In the nonterminal case, 

a) If CURRENT-EVENT has a downward pointer, take it and go to step b.   Otherwise 
go 10 step c. 

b) If the event is unopened, make it the CURRENT-EVENT.  Otherwise go to step a. 

0        It the event has a right pointer, take it and go to step b.  Otherwise go to step d 

d>      If to SepT^ POinter (WhiCh mUSt e)<ISt 0r Step C WOuld n0t have failed) and 

fhe PEG Je
Ur^XT V 'r^^ tree SearCh f0r the first unoPened —»•   Step a moves down 

now b^Vted (the So?;6 CtePS C Td ' m0Ve UP and t0 the r^-   The BACKGAMMON program w^N now be traced (the program is repeated for convenience with syntactic updates). 

BACKGAMMON :- START , REST-OF-GAM^ 

ll^L := (GENSCQ PLAYER T ("> KOLLDW) -> COMPARE 
ROLLDIE :» (GENMEM DILVAL T) 

COMPARE := (INSERT PLAYER.dNDEX MAX DIEVAL» -> FIRST-MOVE 
FIRST-MOVE   :- (TERMINAL PLAYER.-l 'MOVES') 
REST-OF-GAME :- . . . 

Figure 3.   Rules for beginning of Backgammon 

The program starts with BACKGAMMON as the CURRENT-EVENT. 

nonterminaiThe ^s^^ " ' n0n,ermina1, * ^ ,S Ch0Sen and attached ,0 the PEG-   *>r this 

BACKGAMMON •= START , REST-OF-GAME 

^rodSctJT5 '" Cürren' PEG-  NOiiCe ,hat START IS iectansular due t0 the "" which follows it in 
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rule 

Figure 20.   PEG after step 1 

Application of SUPER-NEXT to BACKGAMMON makes START the next CURRENT-EVENT. 

2.   Since START is a nonterminal, a rule is chosen for it and attached as in step 1 above.   The 

START ;- (GENSEQ PLAYER T (-> ROLLDIE)) -> COMPARE 

results in Figure 21 with control passing to GENSEQ. 

COMPARE J 

44 

Figure 21.  PEG after step 2 
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type.  Control now p^e. to ROLL« unciel PLAYER! ^""^ '** * ^ '"" '"*'•** "' ,h,S 

c BACKGAMMON 

G S TART 

C GENSEQ 

I PLAYER.!-*-JQE 

■ 

c ROLLDIE 

COMPARE 3 

PLAYER.2-^JOHN 

J   c ROLLDIE 
) 

Figure 22.  PEG after step 3 

DIEVAU  l^cf tNs'GENMFMt' Pr0dü"eS I'6 GE'MEM eVent' Which reSults in ^ in a binding for 
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QBACKGAMMON 

L PLAYER.!-^ JOE PLAYER. 2-^ JOHN] 

Q   ROLLDIE   ^ C ROLLDIE 
) 

Q   GENMEM J r GENMEM 3 

CDIEVAL.1^3^      (^DiEVAL.l^Q 

Figure 23.   PEG after step 4 

5. Control passes to COMPARE which causes the production 

COMPARE :- (INSERT PLAYER.ONDEX MAX DIEVAL)) -> FIRST-MOVE 

6. When control passes to FIRST-MOVE, 
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FIRST-MOVE := (TERMINAL PLAYER-1 'MOVES') 

is chosen, passed to, and executed. Since INSERT is in FIRbT-MOVE's access path, PLAYER.-l (the 
last player mentioned) evaluates to JOE, producing the string "JOE MOVES" as the result of the 
TERMINAL event. Figure 25, now the same as the PEG given in Figure 5, shows the result of this 
action. 

7.   The program continues by moving to REST-OF-GAME, where some action presumably takes 
place, and concludes when the original 3ACKGAMM0N event is crossed, leaving no unopened nodes. 

PLAYER. 1^-JOE m  PLAYER.2^-JOHN |   (  INSERT ^^^FIRST-MOvT) 

Q   ROLLDIE   J (^ROLLDIE)    (pLAYER.l = JQE) 

c GENMEM 

C 

;   C 

DIEVAL 

GENMEM 

^7)   C 

J 

DIEVAL ^D 
Figure 24.  PEG after step 5 
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PLAYER. W-JOE [«,  PLAYER.2^-JOHN|   (^  INSERT }*^FIRST-MOVE^) 

C ROLLDIE 

C 

J C ROUDIE )    (^PLAYER.l = JQt) (TERMINAL.) 

GENMEM }     C GENMEM 3 C "JOE MOVES" 
) 

(^DIEVAL.W-3")       (TJEVÄLJ^T) 

Figure 25.  PEG after step 6 

3.6     SUMMARY 

Using graphs or trees as a medium for describing various properties of programming 
anguages has been common in computer science research. For example, the Vienna Definition 

Language tries to formalize a method for stating a programming language's semantics by formulating 
an execution tree and providing primitives for manipulating that tree [WEGNER 72] Each language 
construct is then defined in terms of these primitives and how they affect the execution tree, so that 
any implementation of the language will have a precise foundation. The tree is their mechanism for 
coordinating the entire formalism. Similarly, the PEG, by being the structure which defines a 
process, is the coordinating formalism within XREP. 
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In this chapter the production language was described by picturing each construct in terms of 
the PEG; the next chapter will study variables and access issues from the same viewpoint. 
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etc''Info's" 'ca^rlhrr'Tr "^ ' ""^ aSG0Ciated With the °b>^ J°h". Chicago. USC 
redundant and se     f   by   ol a   a^:::!' fT ^f6*  ™dif-   *  cons,dered   nonrestric^e  o 
clause (now called resfr c ,7 n^^^^ lf necessa^ to ,he identification, the 
For example, in the statement  "USC whLh    n    t      o   ^l "^ PhraSe) ,S n0t enc,osed '" commas, 

won the Rose Bowl n   975" is noSe^t ic ivT Hn! ^ " 1975, 'S Pr'Vate•,, the clau5e ,,wh'ch 

won the Rose Bowl in 1975 is or vate ••   It        ^     ^ ^^ beCOrnes "the scho01 ^^ich 
restrictive.   Since most mandate ob ec'-d   TZ * ^"^ t0 iden,,fy the SUbJect' he™» 
retrieval mechan.sm and '   he    net, h^Lh XPEP  Pr0Per ^T'^ reStriCtiVe C,aUSe is a mai0r 

be shown to be . specia, cj^^^Z^r   ' ^^ ^^ ^ ^ 

fiexibiiS6 ^^; t^:j^:e^:s:ns"sn are iot ea5iiy c,assmed- ^ * ^—and 

1. The last player. 

2. The first player. 

3. The player who rolled a 5. 

4. John's die value. 

5. The player who rolled a die. 

6. The die value rolled by the last player. 

7. The last player before John. 

8. The player who rolled the largest value. 

l^ylT:::^:: :rr::sr zt in
bf

urs where a ^*r *-• - ** 
because a reference to "t e player" would ba IhM ' PrediCate' firS, 0r ,ast- IS need^ 
seems to be useful only , ,dent fymp end oomts of ' t '' * T*"' ^^ 0f this Predlca,e 

"the next to last." or "L third" a^nn^ 1 ?  VPe s members.   References like "the second." 

possibility for eror is greater fo both ZT' ^?* "^ 0r "f0Urth fr0m las," are- sin^ ^e 
presented an unnumbered st to mt a„W ! Z* *"* ^^ 0f ,he Mor^^' " someone had 
would ask for conTmaHon o h. ? and a

f
sked for a COmme^ on the sixth item. I suspect that I 

-P.-co^putÄf^ —ge does not'often use 

associa^d^^oblecrSlsV^ t ^ ^ ^ 0bjeCt by ^ ^ ^^t.on 
the search, is restrictedby hav nf 5\Vh d,e v'lu if s 

yPe- 1
ln
|
the f0rr a P,ayer' the ob^ct of 

information would be necessary SeVeral playerS had the same number, more 

notio tÄ ^ialt^tX^^l/'6 f ^IUe iS ^ 0bjeCt 0f ^^^   ^ botb "ses. Piict imkage is g.ven to help make the proper association.   In other words, John's 
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age could be requested in a context-free manner because all humans have an age, but not all humans 
have d.e values.   The v^dity of "the last player's die value" depends on the invironment ofthe 

3c t rule WEpTär n* ^l ^11 be baSed 0n SOme pr0ximity measure rather than some 
explicit rule.   XREP s PEG allows exactly these kinds of associations to be made. 

The alayer in example 5 is identified by association with an event as opposed to an object -- 
rnnnto t ^'y   diffe^nt   fr0m   any   of   the   precedmg      However(   notice   ^   ^   f. ^   ' 

counterpart in traditional programming languages. 

th« fnr^-lr f T.7 ty,Pif^ ,he relallVe typeS 0f addresses which replace the numeric kind. In 
he ormer the last die value m.ght have sufficed, but its form emphasizes the player involved In 
he latter counting war. presumably not feasible, so a new context, John, is named and objects are 

nlZllt T T "^ 0Cal POint- ThiS me,h0d ,S 0ne 0f a class of nami"g mechanisms which is 
more e.aborate and more context-dependent than those found in computer languages. 

The last example is the most difficult because of the generality of the reference. It says to 
select a player based on the result of some function appl.ed to an object associated with players 
Many assumptions must be satisfied before such a request can be fulfilled: what is done if a player 
has no die value, what if a player has two die values, what if the result is not unique? Again, this 
reques ,s mghly dependent on the context of the inqu.ry; each anomalous case must be treated 
separately. 

The examples given cannot possibly be exhaustive, but are intended to represent typical 

Si«8«^ 'T ^ n?tUral lan8Uage- EaCh CaSe Wil1 have an '"^Pretation in XREP within the facilities of the production language. 

4.3     ACCESSING TYPED V/]RI,WLKS IN XREP 

Generation Numbers 

A typed variable is created in XREP through a GENMEM or GENSEQ event.   The value of the 
variable is assigned to the form 

type.n+l 

where n is the current generation number for this type in the event's access path. The generation 
number, defined in Section 3.3 as an integer which identifies the relative position of a variable 
serves more as a convenience for the discussions than as a fundamental tool of the formalism 
because high generation numbers are not often used. As mentioned in the previous section. 
accesses to a set of types probably use numeric expressions only at the end points - for example 
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PLAYER.l. PLAYER.2. PLAYER.-I. PLAYER.-2 -- while accesses to the middle of such a group most 
probably name an intermediate target and then give relative specifications. 

The scheme for assigning generat.on numbers is simple: for GENMEM the current number is 
incremented for a type; for a GENSEQ the numbers are mcreiriented across the driving type. The 
assignment in a GENSZQ comes mere from intuition and convenience than from a strong logical basis, 
since each of the elements could be assigned the same number. Figure 26 shows the GENSEQ from 
the BACKGAMMON game. On the left is the actual structure; the PLAYERS are numbered 1 and 2 
(according to the GENSEQ rule) while each DIEVAL for the GENMEM is assigned 1, since each is the 
only DIEVAL in its own access path. The structure on the right of Figure 26 is also possible, since 
each PLAYER is likewise the only one in each corresponding access path. 

GENSEQ GENSEQ 

PLAYER.l —JQE PLAYER.2—JOHN      PLAYER.l—JOE      PLAYER. 1—JOHN 

I i        1 
GENMEM GENMEM 

I I 
ROLLDIE ROLLDIE 

GENMEM 

ROLLDIE 

GENMEM 

ROLLDIE 

DIEVAL.1 — 3 DIEVAL.1 — 1 DIEVAL.1 — 3 DIEVAL.1—1 

Actual Access  Graph Possible Access  Graph 

Figure 25.   Generation number example 

A mere ambiguous situation occurs in the Access Graph skeleton shown in Figure 27. What 
should the last DIEVAL be numbered' A case could be made for 2, 3, or 4. A more complex 
numbering scheme involving extra indexing is also possible, but since this situation is rare and since 
XREP has many ways to access all the typed variables unambiguously without relying on the 
particular numbering schema chosen, this problem is one more of implementation than of substance. 
As a result this and similar anomalous situations will be downplayed; the emphasis will be placed on 
the addressing methods. 
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ACCESS PATH THEORY 

DIEVAL.l 

GENSEQ 

PLAYER. 1 PLAYER. 2 

DIEVAL.2 

t 
DIEVAL.? 

DIEVAL.2 

Figure 27.   An anomalous generation number situation 

i.i      RKI.nTIVE ADhRESSING 

One   of   the   claims   made   earlier   in   this   report   was   that   the   language   and   the   PEG 
promoted a notion of spatiality for data items.   That is, rather than merely a value, a variable also 
has a referenceable location within the evaluation environment.   To take advantage of this extension 
ways exist within the language of access       data in a spatial manner. 

The basic method is to refer to the variable type, together with an identifying expression as 
follows: 

type.expression 

The expression may be anything that evaluates to an integer (other than zero), or it may be a 
functional form, INDEX or FIND. 

INDEX will be described in the next subsection as a function which inspects GENSEQ structures. 
FIND is a function which specifies a search for a type whose position is unknown.   Its form is 
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type.(FIND APl-expres;ion) 

For example, if a DIEVAL less than 5 is desired, the request is 

-DIEVAUFIND (LT DIEVAL 5» 

Other examples will be given later. 

ACCESS PATH THEORY 

For   the   case   in   which   "expression"  of   Type.expression"  evaluates   to   an   integer,   the 
addressing interpretation depends on its value,   if it is positive, that precise typed vanable is looked 
or in the appropriate context path.   This is a standard access, no different from traditional systems 

D.'/wrrTT^f' ,hen a 'Slat,Ve ;,CCeSS iS def,neü ,r0rn the P0,nt of ;hls reference.   For example, if 
H uS r^ues'- !he ^lue returned is the first PLAYER found in the search up the context 

path, i.e., the last PLAYLR generated or inserted into the PEG.   Similarly, PLAYER.-2 would refer to 
the second PLAYER in the search up the tree (the next-to-last player generated or inserted) 

References of the latter type ■g.ye the system its heterarchical flavor; different processes 
communicate in a nonhierarchical manner. Information is produced by a process and exposed to 
whoever has rights to it. A hierarchy is imposed only implicitly by the structure of the PEG in 

dealing with the scope of typed variables. This situation will allow us to reorganize programs with 
certain faulty retrieval attempts. 

The negative generation number specifies an access relative to a reference point. Another 
Kind is possible where the desired data is referenced relative to other data.   Its form is 

« 
type.exp FROM spec {FROM spec} 

con.!!16'uWOrd«' a »al'd reference 's a {l'pe.exp followed by any number of "spec" separated by 
|-KUM, where spec is either an event name or another type.exp. The list associates to the rieht 
Thus e 

DIEVAL. 1 FROM PLAYER.-2 FROM ROLLDIE 

is equivalent conceptually to 

(DIEVAL. 1 FROM (PLAYER.-2 FROM ROLLDIE)) 

though no parentheses are allowed, since any other structuring will not make sense.   If a nonunique 
event is named in the acces-., the one "nearest" the current reference point is used. 

When a typed variable which precedes a FROM has a positive generation number,   it is located 

UWO llon^nnVf"? ^ "^ * ^ ^'^ referenCe p0int' ln ,he above ex^Ple. on« 
nrrwA. 0      0iLDlc  "**  ^  l0Ca,ed'  DIEVAL1   specifies  a  downward  search  for   the  first 
DIEVAL encountered, not something named DIEVAL.l. Notice that if a GENSEQ structure (or any 
compound event) is passed in the "upward" search for PLAYER.-2 FROM ROLLDIE, the following 
downward search for DIEVAL.l may be ambiguous, since each branch of the GENSEQ may contain a 
UltVAL. The ambiguity of the situation, explicit and graphic, is easy to relate back to the user as an 
error. 
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ACCESS PATH THEORY 

To further emphasize how the FROM reference works, some hypothetical requests will be 
evaluated in the context of the Access Graph skeleton shown in Figure 28. Each reference will be 
given followed by an interpretation of its evaluation. Three items should first be reiterated- 
negative generation numbers are references up the Access Graph, positive generation numbers are 
re erences down the Acce« Graph, and no access strays out of the context path of the original 
reference point.   The examples follow. 
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1. DIEVAL.l 

2. DIEVAL.2 

3. MEMBER. 1 

EVENTX 

I 
PLAYER. 1 

4. PLAYER. 1 

5. 

EVENTY 

I 
DIEVAL.2 

MEMBER.! 

PLAYER.2 

6. 

7. 

8. 

9. 

10. 

PLAYER.2 

I 
MEMBER.! 

I 
EVENTX 

\ 

PLAYER.3 

I 
EVENT 

Figure 28.  An Access Graph skeleton 
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ACCESS PATH THEORY 

Reference point:  EVENT 
Access request:   PLAYER.-2 FROM MEMBER.-l 

This reference is solved by locating MEMBER.-l, then finding PLAYER.-2 relative to it. MEMBER.-l is 
found by looking up from EVENT for the nearest MEMBER, which happens to be MEMBER. 1 of line 7. 
Using it as the new reference point, the new target, PLAYER.-2, evaluates to the PLAYER.l of line 3. 
Note that if the request had been for PLAYER.-2 from EVENT, the result would have been PLAYER.2 
in line 6. 

Reference point:  EVENT 
Access request:    DIEVAL.i FRQM PLAYER.-2 FROM MEMBER.-l 

This request is initially the same as the one above, with PLAYER.-2 from MEMBER.-l pointing us to 
PLAYER.l on line 3. DIEVAL.I from it means to now search down the access path for the first DIEVAL 
found, in this instance to DIEVAL..2 of line 5. Notice that the context path of the original reference 
point is not left, hence there is no ambiguity about downward searches. 

Earlier it was mentioned that this string of FROM references associates from the right.   It is 
easy to see why, if you try to evaluate the above request from left to right. 

Reference point:  EVENT 
Access request:   PLAYER.l FROM EVENTX 

In this request EVENTX in line 3 is located (not the one in line 2), with PLAYER.l from it resultinp in 
the PLAYER.3 of line 9. 

Within  this   framework  the  example  English  references  given  in  Section  4.2  can   now   be 
translated. 

1. The last player. 
PLAYER.-1 

2. The first player. 
PLAYER.l 

3. The player who rolled a 5. 
PLAYER-1 FROM DIEVAL.(FIND (EQ DIEVAL 5)) 

4. John's die value. 
DIEVAL.I FROM PLAYER.(FIND (EQ PLAYER JOHN)) 

5. The player who rolled a die. 
PLAYER.-1 FROM ROLLDIE 

6. The die value rolled by the last player. 
DIEVAL.I FROM PLAYER.-l 

7. The last plsyer before John. 
PLAYER.-l FROM PLAYER.(FIND (EQ PLAYER JOHN)) 
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ACCESS PATH THEORY 

The reference to "the player with the largest die value" will be examined in the next subsection. 

/iddressing a CENSKQ 

Thus far all the access questions have ignorea the GENSEQ node. Since it represents a 
structure of independent events, come mechanism must acknowledge the coherent character of the 
node. Basically, the GENSEQ can be thought of as being a set of contexts or symbol tables which 
contain data. Thus a request from outside the GENSEQ (but in the same access path) may wish to 
get a "pointer" to a branch (context) of the node in order to do some calculation. The INDEX function 
accomplishes this task. 

The call to INDEX is • 

maintype.(INDEX function subtype subtype-depth) 

where "maintype" is the generator type of some GENSEQ, "function" is used to select a member of 
the set "subtype," "subtype" is some type which appears in each branch of the GENSEQ in question, 
and "subtype-depth" gives the relative position of "subtype" to "maintype." The "subtype-depth" 
defaults to one if it is not specified. If gives, as mentioned above, a relative position. For example, if 
it is 2, the located subtype satisfies 

subtype.2 FROM maintype 

for each GENSEQ branch. 

In the BACKGAMMON program, the COMPARE rule was 

COMPARE :- (INSERT PLAYER.dNDEX MAX DIEVAL)) -> FIRST-MOVE 

The "maintype" is PLAYER, the "function" is MAX, the "subtype" is DIEVAL, and "subtype-depth- is 1 
since it was not specified. Notice that if each player rolled two die and the compa. -.on was to ^ake 
place on the second roll, the call would be 

PLAYER.dNDEX MAX DIEVAL 2) 

In the COMPARE rule the segment PLAYER.dNDEX MAX DIEVAL) tries to get a pointer into the GENSEQ 
node to the player with the largest die value. The result of this access must be unique; otherwise a 
failure which leads to backup occurs. Most often INDEX will be used in conjunction with INSERT in 
order to provide a context-maintaining pointer for future references. The reinsertion of the found 
type in the PEG is implemented as an indirect pointer back to the original binding. So once INSLRT 
has done its work, a reference like 

DIEVAL.l FROM PLAYER.-l 

will result in the largest DIEVAL (just found by the INDEX function). 
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ACCESS PATH THEORY 

The goal of the INDEX function is straightforward, but the complexity of its parameters is not 
The decision to make it work on a "subtype" via one "function" is arbitrary but not restrictive due to 
the arbitrary power which can be programmed into "function." In any tase the situation is not 
critical, since perspicuity (not to be underrated) and not capability is at stake. 

A different design problem can be captured by viewing Figure 29. What should the result of a 
DIEVAL-2 reference from EVENT be? This situation is so obscure that the time spent on it may not 
be worthwhile; a case could be made for any of the first three. Most likely this particular graph will 
never exist, and if it does a more specific access would probably be made. In Section 4.6 a 
precise formulation of access paths will be given; this question will be answered then. 

DIEVAL.l 

GENSEQ 

DIEVAL.4 

EVENT 

Figure 29.  An Access Graph skeleton 

4.5     THE /ICCKSS P/ITII PKOHI.EM 

A study of algorithms meant for humans (rules for games, directions for product use, etc.) 
reveals that information tends to come in functional packets without regard for any structuring 
issues. In trying to code such specifications for a computer, programmers often produce a product 
which reflecting diffuse structure, global variables, uncontrolled transfers, all items which Dijkstra 
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ACCESS PATH THEORY 

deals with in his structured programming theory [DIJKSTRA 72]. His ideas present a unifying goal to 
programmmg. but are not at all natural for humans, programmers included. Yet human specifications 

tninZ* ^ Ure' t
t
h0^.h/

much
t 

of i* is ^Plicit. The use of anaphoric and relative references, 
e lipses, and sequential information provide clues that human dialogue and descriptions contain 
structure, though perhaps not as formally as one of Dijkstra's structured programs. 

ma,nta
C0^,de

t
r  ,hf Aut0'"atic

t 
Prog^mmmg task.   Assuming that one of  its goals  is  to  find and 

th«    rlcl. .^      M        ??* m the natUral langUa8e Input' the access Path Problem ^ to organize 
he  fragmented  problem statement  so  that during execution every process  has  access   only  to 

relevant information while maintammg the appropriate sequence of actions.   Given that goal, some 
general issues can be discussed. 

Iletornrrhy versus llirrarrlty 

Automatic Programming has found its way into the realm of Artificial Intelligence because of its 

f^nd^n'^ f V'M Tn0'^30^- ^ brmSS ^ ' ^ ^ ^'^^ ^ de^ ^ ^^V found in Artif.c.cil Intelligence, heuristics, search, representation, etc. Program organization as a 
representation problem, is one of these concerns. ganizanon, as a 

A strict, pure hierarchy which defines a structured program may not be realistic or even 
desirable as a target for preliminary programs generated by Automatic Programming due to the 
^"hierarchical nature of the human input. The heterarchical ideas, mentioned in Section 2.3, offers 
the flexibility necessary in the initial translation attempt. In this framework control is diffuse 
processes are activated in a goal-oriented manner based on the state of the computation, while its' 
aata   exists   and is found as needed. 

CASAP [BALZER 73] tests these system ideas in a simple card playing environment. Its basic 
feature comes from the interface between a routine and the data base. In CASAP a process 

the^d^baT      0rmati0n, Wlth the interface tryinS to fmd '*'th^ centralizing the knowledge about 

ha^ ^l^ that rUCh flexibili,y iS needed 'S 0pen t0 *uecJi0"- XREP tak^ a middle position 
between the two extremes of hetc-rarchy and hierarchy by offering a nonprocedural control flow, 
yet addressing aata access and scope issues. 

Nonprocedural Control Flow in XKKP 

h, t J^ COntJ'01 M0W in XREP iS determined by the Production system character of PLX, organized 
but no procedura y oriented. The segmented nature of production rules are like procedure or 
subroutine calls bu without a formal parameter-passing mechanism. This model has two purposes: 
to provide a control which can be easily monitored and understood and at the same time to allow the 
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ACCESS PATH THEORY 

These qualities do not, however, 

/iccftsx and Scope of Date 

evaluattn^oZnltp^ JA l
|
,
rk

,nt,0 ,he PEt\ f^M, GENSEQ, and INSERT create an 

«pabillly.    lns,ead,eLr;11* S L;*   '^l^'^r ^'T T? ^ '^ 

Dvtcrmimng Arcass Path* 

i.6     COMPUTING ACCESS P/ITIIS 

empha   ze thet d    Tenc      AnodT^'^ and  n0deS ^ ^^  '"  0rd-  »o 
inte%retation '^ nXating a^ a T.T"' ""^ haS a Simple 

when viewing the Access Graph. G '^ 0nly a Sl,Bhtly m0re COmP"cated one 

events^r^bo'ed inTot^H ^Ure ?0 f^* same « ^at of Figure 4 except that the compound ~=-"ä rent z^z'z Äi- 
COMPARE, GENSEQ-NODE, START, BACKGAMMON 

(i) See [WULF 73] for a discussion of this topic. 
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ACCESS PATH THEORY 

while the path for the second GEMMEM is 

ROLLDIE, PLAYER.2<-J0H,N, GENSEQ, START, BACKGAMMON 

Treated in this node format there is no arr,b,gu,ty in calculating access paths because every event 
has a umque ancestor; the "joins" in the Access Graph occur only within nodes, which are masked 
when viewed from outside the node. masKea 

BACKGAMMON 

START REST-OF-GAME 

FIRST-MOVE 

Figure 30.   An Access Graph in node format 
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ACCESS PATH THEORY 

by movm^ tTT ^ T^ "^ COns,derinS ,he PEG   ^ access path of an event is determined 
IroZZf, ^P.(When n0 left lmk ex,:i,s)- Wlth al1 even,s 'eluded except those which are 

llTrmwT    ' and ^'^ by a left link- ln F,8Ure 5 (repeated f- convenience) the acc^ 

COMPARE, GENSEQ, START, BACKGAMMON 

^BACKGAMMON 

•\   COMPARE    ) 

\ 
PLAYER.2^-JOHN]   ^  INSERT )**(^FIRST-MOVE) 

CROLLDIO  (pumj = JOE) CTERMINAQ 

T    GENMEM )  c GENMEM 3 

CDIEVAL.1^3)      (mEVALJ^T) 

("JOE MOVES") 

Figure 5.   A Process Elaboration Graph (PEG) 
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fh^JJ^ P8™^0-^' IS inCluaed beCaüSe '' WaS reached ^ an UP link' not a left one.   Similarly, the second GEIMMEM visits 

ROLLDIE, PLAYERS-JOHN, PLAYER. 1<-J0E, 
GENSEQ, START, BACKGAMMON 

but PLAYER.K-JOE is removed, since it is protected and was reached by a left link, leaving 

ROLLDIE. PLAYERS-JOHN, GENSEQ, START, BACKGAMMON 

as its access pathas before. The boxing operation done to the Access Graph is reflected in the PEG 
by never moving down" in tracing access paths since the down link represents the execution of the 
compound event. 

Pn        Still,
1 ^r I^3-" eVent,S aCCeSC Path' a n0de may be '"spected under the proper conditions 

Se tfonT^' Dt   ^Tiv^ deGI3ned f0r Just that purp0se- However' the question   ai e5Tn 

to%r condmons.rnm8 * "^ t0 the 8raph " F,8Ure 29 f0rCeS the definitl0n of those 

access  Jo  IU   Z'    \ I      ?0™ ^^ WaS t0 all0W any descendant of a compound event 
access  to  its  information.   It only remained to decide how to "linearize" a compound event for 
mclusion in the access path.   The logical choice is to consider the node in 
t-or the L.ENSEQ node in Figure 30, that sequence is 

reverse time sequence. 

DIEVAL.l<-i, GENMEM, ROLLDIE, PLAYER.2<-J0HN 
DIEVAL.l<-3, GENMEM, ROLLDIE, PLAYER. 1<-J0E 

The algorithm for this process is 

LINEARIZE (NODE) 

1. If NODE is NIL then return. 

2. LINEARIZE each son of NODE, rightmost son first. 

3. Print NODE 

When a node has no sons, then the recursive call in line 2 will be 
line 1. LINEARIZE (ML); hence the test in 
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In an ALGQUzed version of LISp( the nigor|thm js 

(LINEARIZE 
[LAMBDA (NODE) 

(if NODE-NIL 
then NIL 

else if NODE.-RIGHT-LINK EXISTS 
then (APPEND (LINEARIZE NODE.-RIGHT-LINK) 

(APPEND (LINEARIZE N0DE:D0WN-LINK) 
(LIST NODE))) 

else (APPEND (LINEARIZE NODE.-QOWN-LINK (LIST NODE]) 

-vin^Äs 'r^frihfpEG' Z fT' ^rTo* ",f" C,aUSe S-erates a .ist of events by 
first the NODE'S right-I^k then tt WDE^L       ! ^^ Pr0duCes fhls list '" reverse order' 

With LINEARIZE de.-ned, a complete access path algorithm can be given. 

(ACCESS-PATH 
[LAMBDA (NODE) 

(if NODE=ROOT 
then NIL 

else if NODE:L£FT-LINK EXISTS 
then (APPEND (EVALUATE NODF:LEFT-LINK) 

(ACCESS-PATH NODEIEFT-LINK)) 
else .CONS NODE:UP-LINK (ACCESS-PATH NODE:UP-LINK']) 

The simple function EVALUATE is defined to be 

(EVALUATE 
[LAMBDA (NODE) 

(if NODE is PROTECTED 
then NIL 

else (LINEARIZE NODE]) 

It merely el.minates protected nodes reached by a left-link. 
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ACCESS PATH THEORY 

Notice that the last "else" of ACCESS-PATH clause handled the up-lmk case. In this situation, 
the event is aaded (accomplished by LISP's CONS) to the list only, not operated on by LINEARIZE 
Applying ACCESS-PATH to INSERT gives 

COMPARE, LINEARIZE (GENSEQ), START, BACKGAMMON 

as desired, while applying it to the second GENMEM produces the same result as before. 

4.7     THE PEC /IND OTHER EXECUTION MODULS 

The semantics of a program executing within XREP are captured by the PEG in depicting all 
he control and access issues.   From this standpoint XREP's execution is similar to that found in any 

language which operates out of a stack, like LISP or A! GOL.   But the role intended for the PEG is 
more diversified. 

In descr.bmg his Contour Mode, as a structure which defines execution of block structured 
programs, Johnston mentions that one of its features is that algorithms and records of execution are 
separate but related components [JOHNSTON 71]. His picture of execution as a contour was 
specifically des.gned to give p. ease meaning to all pnases of execution of block structured 
programs, including passing control and accessibility of data. The model is separate from the 
program and can be interrogated independently. 

The PEG has the same flavor. It is independent of the PLX program but yet is carefully 
designed to capture the structure of the production rules of which it is comprised. Like the Contour 
Model,  ' 
D 

ac 

lodel, a visual display of execution, available for analysis, can be related back to the original 
rogram. The .ntent, however, is not semantic definition, but understanding and debugging This role 
ccounts  for  the  inefficiency  in  never deallocating  any completed  processes, a  major  concern of 

other execution models.   The entire history of the execution is needed for deb egging purpose:;. 

In XRE, access paths are implemented in a configurable way. In other words, each nodt in the 
PEG is semiautonomous, a result of the segmented nature of production rules. If access is needed to 
a different node, then a link, oy way of the event separators, must be built between the two throuph 

! ^"^ ™..hanism. The "independence" of nodes gives the debugger specific entities on 
which to address the access path problem. By building or inspecting the links between nodes the 
program can be properly strucl.red. In SIMULA [DAHL 66], an ALGOL-based simulation langu.ige a 
similar situation exists in linking processes together. A process in SIMULA is meant to be a complete 
action acting on its local data and on data generated and stored within other processes The linkage 
between processes is set up by items called "elements" declared within the requesting process The 
thought behind this organization concerns the needs of simulation systems. The demancs of 

simulation makes it difficult to program problems in standard languages. The individual, 
nonhierarchicai nature of a SIMULA process, together with explicit programmable links, evidently 
better reflects simulation s.tuations. 
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The event separators in PLX are very smnlar to the "elements" of SIMULA; both have the same 
basis.   In SIMULA processes are best described as separate entities, while in PLX the production 
rules are also meant to be independent in nature.   Both systems needed a way to get the separate 

process to communicate; SIMULA uses a specific pointer, while XREP does it by configuring access 
paths. 

All the features and capabilities claimed tor PLX and the PEG are directed toward providing an 
internal model which captures algorithms acquired by an Automatic Programming system from a 
natural language source, and which is amenable to debugging analysis. The access path issues of 
this chapter, though emphasizing the former concerns, prepared the groundwork for many of the 
debugging algorithms of the next chapter. 
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S.     INTENTIONS AND DEHUGGINC 

5.1     INTRODUCTION 

Thus far, XREP has been described as a system composed of various programming constructs 
which combine to provide an environment suitable to Automatic Programming. The overall goal is of 
course to generate (or write) correct programs. In this direction this dissertation starts frorr an 
existing program, uses expectations in the form of intention strings, then automatically debjgs 
certain errors that arise during execution. Before the details of XREP's intention and debugging 
mechanisms are aescnbed, other works that address the problem of writing correct and reliable 
programs will be reviewed: Section 5.2 describes "standard" programming systems, Section 5.3 
describes aspects of the program proving process, while Section 5.4 covers automatic debugging 
systems. Each section will emphasize the expectations of a system, how they are recuived, and how 
the system uses them to help find and correct errors. 

5.2     SYSTEMS FOR If KITING PROGRAMS 

Systems which provide environments for programmers deal with a class of errors normally 
associated with programming details — bad syntax, misspellings, etc. They fall into two basic groups: 
static compile-time errors and dynamic run-time ones. In trying to cope with either set, the software 
system can only assume or expect that the programmer's input is rational, and that any simple, 
detectable, obvious error should be repaired if possible. 

In a batch environment the only expectation held by a compiler is that the input is intended to 
make sense. So when PL/I repairs a program by inserting missing semicolons, progress has been 
made, beyond the infuriating FORTRAN error message that 

GO TO (10,20,30.40) I 

is missing a comma after the right parenthesis.   In any case, purely syntactic errors are not that 
interesting in this environment, while run-time ones only cause immediate failure. 

INTERLISP [TEITELMAN 74] will be the model for the discussion of what can be done by an 
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mcXp 0n'U7 SySten ln a0dltlOn t0 pr0Vldins a ser,es of interactive debugging tools(i), 
nn 1 r,PKr.0V1erST!r

aTLJSP"0riented ed,t0r and an aut0matic error correction package named DWIM 
Do ^hat I Mean) [TEITELMAN 73],   DWiM does automatic spelling correction, syntax modification, and 

ine^.ke based on run-time analysis of program errors.   DWIM works well because it knows about 

In his Ph.D. dissertation. Yonke develops a system which has similar capabilities, but which is 

ÄT7KI Tl      \SinCe n IS dr,Ven by external lansuaSe specifications (written by an expert) 
LYUNKL 75].   Both systems show what can be accomplished if the computer is allowed to be 
active in the program construction process, even though working in a task-independent domain 

more 

S.3     PROGRAM PROVING SYSTEMS 

The intent of the program-proving community is to provide formal methods for verifying 
programs. In their framework a program is augmented with strategically placed assertions tor 
describing what should be happening at various points in the process. From these assertions 
verification conditions can automatically be generated and then proved in various ways{ii). 

The assertion language in current research is typically some dialect of the first-order 
predicate calculus. Its role is to provide a secona description of the program, where the program 
itself is the first - the assertions are fnus redundant specifications of the program On the 
assumption that its assertions are an accurate statement of the programmer's intention, the program 
is formally proved by verifying that every execution will satisfy all the assertive conditions The 
assertions are thus the system's expectations for the program{iii). 

One problem with this technique is that the first-order predicate calculus is not very 
expressive and can produce detail in almost incomprehensible quantities. Trying to prove the 
verification conditions  becomes  a large task, difficult  for either  man or  machine.    An  interactive 

proofnCOOD^Bb5] ^^ in 0ne Pr03ram Verif'C5tl0n System s0 that the user can helP Buide the 

What seems to be needed is higher levels of abstraction in the assertion language, or 
whatever level of description satisfies the user.   If a program is to be proved, a description of its 

(i) See [MANN 73] for a survey of these debugging tools, 

di) See [ELSPAS 72] for a complete review of this process. 

(111) In fa^ , Buchanan ana Luckham automatically generate some simple programs from assertions and 
an appropriate set of axioms [BUCHANAN 74]. The formal method of generation, based on 
theorem-proving techniques, guarantees that the resulting program is correct. 
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intent is mandatory.   However, if it is going to be as difficult to write assertions as it is to write 
programs, then the cost and feasibility of this process are open to question. 

D. Good recognises this problem and suggests a programming environment in which programs 
and assertions are stepwise refined together from the start of the development phase [GOOD 75a]. 
Thus a program can be proved at various levels of abstraction. For this idea to work, expressive, 
formal assertion languages are needed. 

If we are to construct proved programs of significant size and complexity, then it 
seems that we should . . . state precise specifications. Obviously, we must be able 
to state the specifications before we can prove that the program meets them. 
Although some progress has been made in this area. . .stating specifications for a 
program remains a difficult problem.(iv) 

Many of the phases of program proving are being automated in one form or another. One that 
has just begun is automatic debugging. Many difficult problems need to be solved before automatic 
debugging is realistic. The next section will shew the complexity of some systems which do attempt 
it in some restricted domain. 

5.4     AUTOMATIC DFAllGCING PROGRAMS 

The three programs reviewed in this section come from MIT, each with the flavor of Artificial 
Intelligence. Each attempts to solve complex tasks within a well specified domain by applying its 
"expertise" to problem situations. The automatic correction accomplished by each reflects a deep 
understanding of the associated problems. 

In his dissertation about understanding LOGO(v) programs, Goldstein uses an external model 
language to describe the intent of a picture [GOLDSTEIN 74]. The picture drawn by the 
accompanying LOGO program is then matched against the model. If a difference is detected between 
the diagram and the model, debugging occurs. 

Figure 31 shows how to describe a simple line drawing of a tree in the model language. 
Figure 32 shows a LOGO program whose intent is to draw that tree together with its result. Several 
model violations are readily apparent, specifically M4, M5, and M7. Using those violations as its 
debugging impetus, h - system produces the converted program in Figure 33. 

(iv)  D.  Good,  "Provable  Programming." International Conference on Reliable Software, Los 
Angeles, April 1975, pg. 411. 

(v) LOGO is a graphics system, devised by Seymour Papert, intended for children. 

70 



■w™ffPBBpBi^iiiWgiPipiPwgpw^^gpppyw^-i.--iMJ*i^i-» 

INTENTIONS AND DEBUGGING 

MODEL TREE 
Ml PARTS TOP TRUNK 
M2 LINE TRUNK 
M3 EQUITRI TOP 
M4 VERTICAL TRUNK 

M5 COMPLETELY-BELOW Ti^UNK TOP 
M6 CONNECTED TOP TRUNK 
M7 HORIZONTAL (BOTTOM (SIDE UP» 
END 

A 

Figure 31.   A Goldstein tree model 

TO TREE! 
10 TRIANGLE 
20 RIGHT 50 
30 FORWARD 50 
40 RIGHT 50 
50 FORWARD 100 
END 

; version 1 
<- (accomplish top) 
<- (setup heading) 
<- (setup position) 
<- (setup heading) 
<- (accomolish trunk) 

> 

TREE  1 

VERSION  1 

Figure 32.   Incorrect tree program 

TO TREE 1 
5 RIGHT 30 

10 TRIANGLE 
20 RIGHT 60 
30 FORWARD 50 
40 RIGHT 90 
50 FORWARD 100 
END 

; versic-> 4 
<- (setup heading such-that (horizontal (side 3 top))) 
<- (assume (enter TREE1 statement 5) {- :heading 0)) 
<- (accomplish top) 
<- (setup heading) 
<- (retrace (side 3 top)) 
<- (setup heading such-that (vertical trunk)) 
<- (accomplish trunk) 

F.gure 33.  CoTeded tree progra m 

Notice that the model language is different from the assertion concept of the last section in 
that it describes the output ot the program, rot intermediate states. The adequacy of the model 
language is, however, hard to ascerlam, since the class of programs handled by the system does not 
allow conditionals, variables, recursion, or iteration. The complexity of the debugging effort is 
somewhat foreboding, considering these restrictions. 

In his work on model debugging. Bill Mark has a less formal intention langjage [MARK 74]. In 
his system the user specifies a "goal" along with the model. If the goal is not attained during 
simulation of the model, it is debugged with that goal as its driving target. For example, a particular 
business model may be set up which is expected to make six sales. If only five are made, the user 
givt; the system 
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(GOAL (INCREASE SALE 1)) 

as it goes into a debugging mode to find the cause of the failure. 

Gerald Sussman's dissertation has the character of both Goldstein's and Mark's programs 
Goldstein's effort is classical in intent: a flawed program is debugged. In Mark's work a model of 

uAr^cilc^ll^^ unmtended interactions prevent the goal from being attained. Sussman's 
HALKtR [SUSSMAN 731 is given a goal, but in the problem solving framework of the blocks world In 
solving the problem HACKER tries to find an applicable program; if none is available it writes one' In 
either case, execution of the program may manifest a bug which HACKER will try to resolve if 
possiblf. HACKER'S intent is not to ju:1 solve any soecific problem, but to write generalizable 
programs for handling a class of related problems. 

For example, in Figure 34 the scene with two blocks and a table is the setting for the request. 

(MAKE  (ON A B)) 

HACKER finds a simple program to do it. 

EL TABLE 

Figure 34.   Scene for (MAKE (ON A B)) 

If the same request is made for the scene in Figure 35, a bug occurs, since the simple program 
cannot move A since C is on it. The program manipulator receives the error message and patches 
the performance program so that C is first put on the table and then A is put on B 

: 

A El TABLE 

Figure 35.   A more complex scene for (MAKE (ON A B)) 
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The modification to the resulting program is general enough to solve the same problem for the 
scene in Figure 36. 

TABLE 

Figure 36.  A generalized scene 

HACKER basically handles three types of errors: unsatisfied prerequisites (eg., the case 
above), protection violations (eg., a subgoal is undone), and violation of domain-specific "aesthetic" 
principles (eg., moving the same block twice) by storing information about them in many different 
system modules. The attack on a bug is a complex dialogue between various independent system 
components, each with expertise in a specific area. The closed, noninteractive nature of HACKER is 
impressive in performance but perhaps causes unnecessary complexities in the general program 
debugging task. 

Each of these theses enters the new automatic debugging area in a familiar way, with specific 
problems in specific domains. However, each derives techniques which can be extracted from the 
work and incorporated in an interactive Automatic Programming type of system as a set of 
possibilities for trial and discussion. The immediate impact of these works will come not from results 
within closed systems where myriads of second-order problems obscure their possible contributions, 
but from their availability as high-level debugging tools within smart software environments. 

5.5     XRRP'S INTENTION STRING MECII/INISM 

As described in Seclion 2.5, program expectations are communicated to XREP via a string of 
discrete events which are to be matched against the results of the TERMINAL events. When a match 
fails, a potential bug may have been uncovered. The system tries to identify it, relate its findings to 
the user, then suggest a particular debugging technique. Used this way, the intention string 
provides an interface between XREP and the user in a form usable by both. The power of this 
method cornes from the freedom and flexibility of both the content of the TERMINAL statement r;nd 
its placement within the program. If either is restricted, then generality is lost in potential stages of 
program development. 
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Pffnrt ^ remaini;8 sedions of ,his c^Pter will discuss various program errors ard the debugging 

detection ofSZ        IT* ^    '" m0Ct  ""^ the intent,0n S,rinS  w.H  be fundamental   in'the8 

«ToHifw »^ S ' T    n   alS0  pr0Viar1S  the  necessary  information  to  the  debugger  to  properly 
modify the program to alleviate the problem. wpeny 

5.6     CENEH/IL KRROH DISCUSSION 

orr^rrld6 Th5'  diffi^U'! ^ '"  flut0ma,,c debugging is determining exactlv  where an error  has 
*MZH  ,   ■!      ma"lfestfon  0'   *  bug  usually  is  obvious; assigning  responsibility  is  much  more 

b      tr c 1  "Sto
t^eX,ra0r?;narily  COmpleX COn,r01  S,rUCtureS  0f   the  debuSg-g  Programs)     If backtracking,  automatic   or  otherwise,   is   part of   the  program's   control   structure,  the   problem 

becomes even more complicated.   The consequence of these observations is that success in a closed 
system comes from careful domain restrictions. 

Since XREP is  "domain-independent." it addresses a different class of  problems  than  those 

HÄrcmKaFRy
b

aSr,ated   Wl,h   ^^   SOlVing-    SUSSman  tr,ed   t0   make this   sa-  Cstinction   •I'thm 
HACKER by ^epmg general   programming knowledge" separate from specific "block world" details 

l.lr  IT\ wu      andleS are assüciated wi,h Progr^ waiting flaws which are detectable at 
execution time, not those which might require problem solving in the translation phase in order to 
just get a program statement(vi). H      «   n uraer 10 

stron/ml'nm^T^ ^r" ^T * ^ ^^ ^ ^ SyStem Can "helP" detect errors and ^^ke 
in er.c'tivp I5      ^f*^™   0/ correcUn* them.   Of course, accepting advice from a human in an 

vstem m .ht h' rH ^ ^ pr
<
eSenCe 0r S0UrCe 0f ' bUg Sh0uld be welc0me. — " the 

thatTo^rh SPPP ?r/qUIPP!d I0/'' *■ The S,tuati0nS Whlch f0ll0w in succeeding sections take 

backtrack) or t ' P * ^ ^ * S0'Uti0n WhiCh the USer Can reJect (causing 

5.7   UNBOUND vnmnm.Es 

The first problem to be analyzed is the case of the unbound variable.   The situation is quite 
common: a variable does not point to bound value.  Consider the PLX program in Figure 37. 

(/i)    See   [BALZER74b]   for   a   description   of   a   Model   Completion   task   within   an   Automatic 
Programming system which addresses that translation problem. 

75 

 -     —  



'. •" "m*-" ■ i  -^——^—^ ""-i"""'^ i.pi-.^i.»fiiJMpii"niJ|iL|i>i.j«.jaJJ 

INTENTIONS AND DEBUGGING 

 >--— 

A 
B 
C 
D 
E 
F 

B,C 
(GENMEM DIEVAL^ 
D.E.F 
(TERMINAL 'IN D') 
(TERMINAL 'IN E LOOKING FOR' OIEVAL 
(TERMINAL  'IN F') 

Figure 37.   Unbound vanable example 

that in,Fitgte
P3088ram ^ rU,,' ^ PEG JUSt "^ ^^ the TERMINAL statement of E ^ ^oW like 

GENMEM 

DIEVAL.1^-6 TERMINAL 
"IN D" 

Figure 33.   Partial PEG for program in Figure 37 

The TERMINAL event in F acrp^pr DIPVAI    I     u« 
contpyt oath n( P a«     J     T      acces-'ej DIEVML.-I.   however, since no such binding exist-, in the 

other Drobtln^       c yr ' W3y t0 acc0mP-h th^ reconfiguration, though it may l.-ad to 
Other problems.   Figure oS chows a repaired vero.on of the Access Graph of Figure 38. 

The problem stems from the production rule 

A := Q , C 

^renr^ratr"00!""0^0^6 ^ C * ^^ pr0tected from -ent B bee. use of r.venf separator   , .   To produce the proper Access Graph the rule snould read: 

A := B -> C 
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GENMEM 

DIEVAL. 1-^-6 

D E F 

TERMINAL 
"IN D" 

Figure 39.   Repaired Access Graph 

This example simplifies what has actually happened because the flaw shows up so vividly in the 
production system. In generating a program in a top-down manner a designer defines different 
levels of abstraction from which his program can be viewed. Each level is complete as a "mad ine" 
assuming the right primitives(vii). If a structural flaw like this one occurs, it is probably a case oi a 
machine needing access to one which is at the same level. In this example, the hierarch> of 
computatior makes the process B a black box to that of C. Yet it seems that it should be otherv ise 
if the PLAYLR.-l request is valid.  The reorganization described resolves exactly that. 

(vii) This is, of course, Dijkstra's simile In   his Notes on Structured Programming [DAHL 72]. 
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The aiBonfhm, invoked when ^n accesr. from event CURRENT to TYPE fails,is ao follows: 

NOBINO (TYPE. CURRENT) 

1. Fmd a previous event, EP, which has an instance of TYPE in it. 

2. Find the common rule ancestor, CA, to both CURRENT and EP. 

3. Inspect the production pje for CA for the form 

CA :- . . . X , . . . Y . . . 

where X is in the context path of EP and Y is in the context path of CURRENT. 

4. Changs that production rule for CA into 

CA :- . . . X -> . . . Y . . . 

5.      Back up the process to the event foilowing X and continue execution from 
there. 

In the example EP, the previous target event is the GENMEM. The common rule ancestor, CA, 
is event A. X is event B ; Y is event C . The rule change in Step 4 makes the B event in Figure 40 
oval instead of rectangular, thus making the GENMEM accessible to event C and all its descendants. 

A few other things should be stated about the algorithm. In Step 1 the context path of EP is 
not subsumed by the context path of CURRENT; otherwise TYPE.-l would be accessible to it. 

In Step 2 the common rule ancestor may be different from the common ancestor if viewing an 
Access Graph. The PEG, however, makes this distinction obvious. Note also that there may be more 
than one rule whose change might colv» the problem. The algorithm picks the "nearest" (in terms of 
time sequence) first. 

In Step 3 a rule like 

CA :- X , Z . . . Y 

may be the culprit.  However, changing it to 

CA ;• X -> Z ... Y 
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M 

GENMEM 

TYPE.l 

N 

GENMEM 

TYPE.2 

L 
M 
N 
0 

M -> N -> 0 
(GENMEM TYPE) 
(GENMEM TYPE) 
(TERMINAL TYPE.-2) I 

TERMINAL 

Figure 43.  The repaired version of Figure 42 

5.8     WRONG UINDINCS 

The solution to the unbound variable error of the Ust section involved reorganizing access 
paths to make the proper information availabk A byproduct of that re-onfiguration is that all the 
information in the path of the once missing type becomos available to the original requestor. For 
example, in Figure 39, event E now has the DIEVAL binding in its path as required, but everything 
else generated by event B is available not only to E, but to 0 and F as well.   This situation, which 
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The case of a wrong binding is more complicated than the unbound variable situation because 
of the larger variety of possible solutions and possible errors. In the unbound case not much can be 
done until some binding is found. The manifestation of the wrong binding error, however, is likely to 
occur during a match of a TERMINAL to the .ntenton string, when much more information is available. 

Consider the Access Graph fragment in Figure 44.   If the rule for event F is 

F :-   (TERMiNAL 'MOVE' TYPc.-2) 

and the current state of the intention string is 

. . . (MOVE 4) . . . 

then a failure occurs since the terminal outout in F would be (MOVE 5). Assuming that TYPE.l is 
supposed to be 5 and not 4 (perhaps verified by an earlier match in the intention string), then 
(unless a major flaw is responsible) the problem could be a simple error in the reference 
specification with the TERMINAL event, TYPE.-2 should be TYPE.-1. 

The only debugging that can be done here is to check the other bindings n that access path 
and see if one works, 'f so, then some sor' of confirmation is required and the change ..■ the 
production rules is a simple one. If the access was done via some arbitrary expression like 
TYPE.(ADD X Y), then little help can be rendered. 

Note that this s mple technique can be tried if an access like PLAYER.-2 hüs no binding. If 
PLAYER.-l does, it might be the correct ore. Thus this method should be trier/ just before the 
NO-BIND algorithm is attempted. 
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TypE.1-^-5 

GENMEM GENMEM 

1 1 
TYPE. 2 .— 3 TYPE.2-^4 

I 
Figure 44.   An access graph fragment 

ITENTIONS AND DEBUGGING 

44 is 
A more subtle rase occurs when there is a structuring error. Suppose the rule for F in Figure 

F :- (TERMINAL 'MOVE' TYPE.-l 'AND' TYPE.-2) 

and the current state of the intention string is 

. . . (MOVE 4 AND 3) . . . 

Then the failure, due to the mismatch of the TERMINAL output (MOVE 4 AND !j) and the intention 
string (MOVE 4 AND 3), is not so aasily repaired. The search for the proper binding s jcceeds 
outside '.he current access path, indicating the need for an application of the NOBIND algorithm. The 
resulting Access Graph, shown in Figure 45, resolves the problem. 
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TYPE. 1-^5 

1 
GENMEM 

I 
TYPE.2-^3 

GENMEM 

I 
TYPE.3—4 

I 
F 

Figure 45.  A linearized modification of Figure 44 

The most substantive error situation is the inverse of the last example.  With Figure 45 as the 
starting point and the same F rule as the preceding paragraph, the intention string 

. .. (MOVE 4 AND 5). . . 

would provoke an error since (MOVE 4 AND 3) results from the TERMINAL event. The fix in this case 
— to turn Figure 45 into Figure 44 -- comes from changing 

E :- (GENMEM TYPE) -> (GENMEM TYPE (-> F)) 

to 

E :- (GENMEM TYPE) , (GENMEM TYPE (-> F)) 

In other words, the event separator " -> " must bö changed to a ",". This modification is just the 
opposite of what the NOBIND algorithm does, hence the inverse notion. A simple modification to that 
algorithm allows it to handle this error condition. 
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Notice thst withou» tne intention string to guide the results, very little could be done in these 
situations. The information conveyed by the matching process of TERMINALS to the intention string 
gives XREP's debugger a firm basis on which to diagnose the problem. Even if the situation is one 
which cannot be handled by XREP, the attempts it makes will at least be reasonable. 

.9     RKCURSION /J/V/} STRUCTURE F/iVLTS 

The last section described errors relating to binding issues which were quite clear-cut and 
needed debugging. Now a different kind of probleir, will be viewed, one in which there is "nothing" 
technically wrong. Instead the error will be strictly related to poor structure and an intuition about 
how a particular Access Graph should lock. 

This problem has a natural evolution and substantial basis arising out of a typical situation. An 
existing program needs to be modified. If tne changes are made with only a local or narrow view of 
the problem, the rooultinc; program can develop a "patched-together" look. In fact, HACKER gets 
exactly this kind of criticism from Suscman himself. His system creates a program in an 3volutionary 
manner without the ability to step b'ick and review it as a complete entity. This is obviously not a 
charge against HACKER, for that ability spans the entire intellectual programming discipline. Still, 
some "global" improvements can be made in a program if some assumptions are allowed. 

The Backgammon example will again be the model. The actual rules for the start of a game 
need to be extended from those given on page 11.   The complete statement is as follows: 

Tlifi ffamr tinrls hy having oncU iilnyor roll n dio. The plnyrr with tho largost 
vnlufi makfts iho first mow, comisling of his roll and the roli ryf the other player. 
In case of a tie the value of the cube is doubled, and the process is repeated. 

The  cube,  initially   I,  represents  the  value  of  the  game  in  any  arbitrary  unit.    Ignoring  the  tie 
condition for the moment, the program is shown in Figure 46. 
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BACKGAMMON s« START , REST-OF-GAME 
START    :- (GENSEQ PLAYER T (-> ROLLDIE)) -> COMPARE 
ROLLDIE := (GENMEM DIEVAL T) -> 

(TERMINAL PLAYER.-! 'ROLLED' DIEVAL-1) 
COMPARE := (INSERT PLAYER.ONDEX MAX DIEVAL)) -> FIRST-MOVE 
FIRST-MOVE   :- (TERMINAL PLAYER.-l 'MOVES' 

DIEVAL.1 FROM PLAYER.-l 'AND' DIEVAL. 1 FROM 
PLAYER.(FIND (NEQ PLACER PLAYER.-l))) 

REST-OF-GAME :-. . . 

Figure 46.   BacKgammon program without tie condition 

This program is essentially the same as the previous ones except for the added detail h ;he 
TERMINAL events. The ROLLDIE nonterminal now include« an observation of the rolling process and 
the FIRS i-MOVE TERMINAL makes the move explicit In terms of die values (as given in the English 
statement above). * 

Given the following initial API top-level assertions 

(ASSERT (AMO JOE PLAYER)) 
(ASSERT (AMO JOHN PLAYER)) 
(ASSERT (AMO 1 DIEVAL)) 
(ASSERT (AMO 2 DIEVAL)) 
(ASSERT (AMO 3 DIEVAL)) 
(ASSERT (AMO 4 DIEVAL)) 
(ASSERT (AMO 5 DIEVAL)) 
(ASSERT (AMO 6 DIEVAL)) 
(ASSERT (VALUE CUBE D) 

the execution of this program will match an intention string like 

(JOE ROLLED 5) (JOHN ROLLED 3) (JOE MOVES 5 AND 3) 

My initial attempt to implement the tie condition quite naturally involved only the addition of another 
compare rule to handle the failure of the INDEX function's attempt to return a unique PLAYER when 
their die values are the same.  The program, including this new rule, is shown in Figure 47. 
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th. I ^ Tc^cc^l genera,,0n numbers for PLAYER »• ^ 3 Or 4. They btc.me that h.gh because 
the second GENSEQ had the Kf| GENSEQ m It. access path. WorKing backwards from fh. Access 
braph, I realized that the proper structure should be like the one shown in Figure 49. 
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aACK GAMMON 

/ 
START REST-OF-GAME 

I 
GENSEQ 

\ 

\ 
PLAYER. 1—JOE       PLAYER. 2—JOHN 

I        I 
'—^ DIEVAI 

\ / 

DIEVAL.1^4 DIEVAL.l —4 

COMPARE 

"TIE" 

I 
(ASSERT (VALUE CUBE 2)) 

I 
START 

I 
GENSEQ 

PLAYER.3-^JO£ PLAYER.4-^JOHN 

I I 

Figure 48.   The Access Graph for the tie example 

■ ■ — 



INTENTIONS AND DEBUGGING 

to ,h/cL ^ ',? 8üre 8 ÜCCUrred At l00 lüW a level' '"^ '^levant mformat,on available 
to the second d.e-rollmg node. In Flgüre 49 lhat s^uat^n was remedied by making the recursion 
occur higher than the GENSEQ. This N* requires the presence of a new 5,mpie even^ INITIAL-MOVE 

Figure 50      mana8e the reCUrS,0'V   A new Se, cf 'ults which embody *** ''xed PEG ,s d.splayed m' 

BACKGAMMON 

/ 

START 

INITIAL-MOVE 

/ 

REST-OF-GAME 

I 
(ASSERT (VALUE CUBE 2)) 

GENSEQ 

\ 

INITIAL-MOVE 

I 
PLAYER. 1*-JOE       PLAYER.2^JOHN START 

DIEVAL.1—4 DIEVAL.1-^4 

COMPARE 

1 

GENSEQ 

/ \ 
PLAYER.l-^ JOE PLAYER..' 

1 I 
JOHN 

"TIE" 

Figure 49.  Corrected Access G.-aph for the tie example 
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Thic kind of prohiem is d'ff.cuit to formalize because of its wide range. When an implicit 
as'.ijrnplion -- whether built into a program or unctdted Dy the user -- is violated, some system 

module must recof.mro the 'itu.ilion and act ^ccordmtjly. StMtman*« HACKER has a Critics Gallery 
which watches over the :oae generator sc that when a proposed program statement is about to 
violate some condition, the .ippropnate cnhc will complain. This demondx) approach seems to imply 
that each assumption ncedi its Own critk Or expert, a possibility which may cause a computational 
explosion    Automatic Progran.mmg efforts wi'l undOubtMÜy uncover many of these cases. 

The RES'SUCTLIPE aigoritum, mvoAPO oy tne detection of a generation number overflow, 
follows. The PEG for tms example, snown ,n Fioure 5;, is annotated by the locals of the algorithm, 
while some of 'ts obvious links are not .ncludeo. nemember that this PEG represents the Access 
Graph of Etgu'e 48. 

RESTRUCTURE (GUILTY) 

1. Find the ru;e father, RF, of the QULTV GE^'M or GENSEQ. 

2. See if RF appears twice in the current contpxt path,   if not, the algorithm fails. 

3. If so, l,ni the i'aicf^therr of each RF; call them GF1  and GF2.   Let the two 
rules QTi ana G"-! have the follow.nj form: 

GF1 - X scpl RF sc-p2 v 

GF2 :- 2 sep MOVABLE-STOFF sep PF 

4        MaKe t.ie fd!!owifl| chdng^s to ine proäram.  Cnange the GF1 rule to be 

GFl :- X sepl TEMPsep2 Y 

Changs the bF2 rule to iie 

GF2 :- Z 

Insert the rules 

TEMP :- RF 
TEMP :- RF , MOVABLE-STUFF -> TEMP 

(ix) A demon is a module which oversees executmi and is invoked when some specific condition is 
met.   P./I ON Conditions are an example of Memon p ograms. 
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5.        To CO" pjte whc^ tvtntl COmpciM MOVAB^E-STLiFF, inspect the original GF2 
rule   from   right   to   .eft,   ignerinf   RF.    For   every   Ei   encountered   do   the 
following: 

j)   If Ei niaKe-. a refcence to a prevo^s event wnich cannot be moved, then 
Ei cannot be moved.   Tr s dedcion ma/ Kcvt to be aeia/ed by step b. 

b) if E. ma^^s <>ny MMftiOnt a^d las aexendants which cannot be moved, 
t cannot oe movea. OthW «NM it can, tnis includes the case where 

(lepena^nts are «raitint for A cec s on abcut Ei >tseif. 

c)    '^e proces-. stops Aren E  cannot oe movea 

in 

(BACKGAMMON J 

N: 

Lu 
START -^BEST-OF-GAME^ 

Tu- Zt . 

(^GENSEQ y^COMPAREy—^FIRST-MOVE^ 

lovablt-ttuff 

Q X TERMINAL  M FUNCTION 7)—^TERMINAiy-^START 1 

Curr«nt 

■TIE- ASSERT CUBE  TURNED 
TO 2" 

(GENSEQ V 

Figure 51.   The annotated PEG for Figure 48 

A few statements should be made aoout this algorithm before tracing it for the BACKGAMMON 
example. Tha MOVABLE-STUFF computalion is done to find those events which will not be affected 
by  the  relocation performed by the RESTRUCTURE algorithm.   The move is both aesthetic (since 
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5./0    PHh:u)\i)ino\s nsu nmoNDmoNS is KECUHSION 

The res'ructunng techniques der.ved ,n the last sect.on can be applied to a class of algorithms 
exemplitiec öy the instructions which might be found on a shampoo bottle. 

1) Wet hair 
2) Lather 
3) Rinse 
«) Repeat 

Statement 4, the source of the problem, *M rot spec', the ctartmg iteration pomt; where should 
we repeat from' Not.ce also that no ..after **•! traten point is chosen, the lack of a terminating 
condtion w! cause 'his a.gor trm to :00p 'orever. ThMt Kinds of flaws are typical of 
hurr.-n-or.ented instructions; the .ser ,s Sopposea to app,/ corr.mon sense to a situation to resolve 
a^biguit.es. in the shanopoo e.arrpie everyone would repeat from Step 2 since wetting already wet 
nt«r is nonsensical.   Hardly an/One wOuid lather up more than twice. 

hi , 7T^'S P♦r0Dlerr,, a,n0ng ^^ 'S descr'bed ^ '■ 0- ►«" '" ^ Paper about programming m Engl.sh 
LHiLL 72,. its message 's clear; Automata Programming will have to cope with poorly specified 
a.gontnms and find methods to cor'ecr.y translate them. 

Given no otner mformat.on. d |«ko y guess for tre start.ng pomf of the shampoo's "repeat- 
statement is the bepmning one. "wet ha.r." ".egect ng the infinite loop, that mterpretatior «s 
_ncorrec oecause it includes a preco^tcn. wef.ng the hair. ,n its ma.n loop body. A program in 
KLX tor this simple aigonthm is shown m Figure 52. 

SHAMPOO 
WET-HAIR 
LATHER 
RINSE 
REPEAT 

- WET-HAIR -> LATHER -> RINSE -> REPEAT 
- (TCRMMAL "WE'T.'NG HA,R-; 

- (TERMINAL FATHERING HAIR') 
- (TERMINAL 'RlNSiNG KAJR*) 
- SHAMPOO 

Figure 52.   The shampoo progra m 

As written, the program will generate a terminal string like 

(WETTING HAIR) (LATHERING HAIR) (RINSING HAIR) 
(WETTING HAIR) (LATHERING HAiR) (RiNSlNG HAIR) 
(WETTING HAIR) . . . 

However, a correct intention string for the shampoo exercise would be 

(WETTING HAIR) (LATHERiNG HAIR) (RiNSlNG HAIR) 
(LATHERING HAIR) (RINSING HAIR) . . . 

The detection of the precond.hon error m this simple example from the correct intention 
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string * not complicated. It a TERMMAL gene-ateo a nonmatchma ofrmp which KM occurred before, 
the precondition error might he hypOthttiMA If the program is ..Mowed to continue, and the next 
TERMINAL does match, tnen the hypothesis is strengthened. In the shampoo program the second 
(WETTING HAIR) string does rot match the intended (LATHERING HAIR). If continued, the program will 
however generate (LATHERiNG HA.R) as de<ired.   The precondition problem seems to be at fault(x). 

The REMOVE-PRECONDITION algorithm to be presented shortly assumes that »he precondition 
event. PRE-EVENT (the MKOnd (WETTING MAIR) string), and the desired event. DESIRED-EVENT (the 
second (LATHERING HAIR) string), have been identif.ed. The algorithm and an annotated abbreviated 
PEG follow. 

REMOVE-PRLCONOITION (PRE-EVENT LESiREO-EVENT) 

1.        Find     tlie     common    rue     father.    RULE-FATHER,    for     PRE-EVENT     and 
DESIRED-EVENT, 

2.        Check il RULE-FATHER-s first son. PRE-FATHER, generated PRE-EVENT.   If not, 
algorithm fails. 

3. Check if RULE-FATHER has already appeared in the PEG.    If not, fail. 

4. Take the rule m question 

RULE-FATHER .=• PRE-FATHER sep rest-of-rule 

and rewrite if as the pair 

RULE-FATHER :- PRE-FATHER sep TEMP 
TEMP :- rest-of-'uie 

5.        Replace instances of RULE-FATHER m t. j right hand side of all production by 
TEMP. 

(x) Since having a postcondition in the mam loop is exactly s/inmetric to the precondition case, it wil 
not be discussed otner than in this footnote. 
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^SIRED'EVENT8^^ l'   fü   ^TV*   ^f^   ^   Chan^   the   eM°"   environment   for UtblKtD cVENi, mrl.,n3 ,J unmatchable with th« inttntiOfl ltrin| if execution i| continued. 

Of   the^ohll^f '^ t^r "C,Ve bePn l0CatCd• the re%t ,0ll0wf- This s'tu^l0n « **** to some 

£,;    ,, f    ^ jearCh inve-t'3ateG generates programs from vanous input descnptions   I/O 
pa^s. ellipses, etc.   One of the examples i« the feliowini aescr.ptions. I/O 

INPUT OUTPUT 

(A BCD)      ->     ((AB)'AC){AD)(BC)iBD)(CD;) 

nd\r n. f'. !" tr:erj t0 'cen,,f/ ,he rtCür,ion P0int in ,he o^M '»t.  One. (/ 
and (C D   are located, the correct pro5ram wnl  be generated.   If this induction process 
else can be done. 

t list.   The 
(A B), (B C), 

process  fails, little 

by   bett 
necess 

The same it true for the REVGVE-PRECO^ITION algorithm. Until this situate can be resolved 
tter debugging mechanisms, .mplerr.entation of the algorithm ,s impractical Some of the 
ary improvements will be oiscussed in Chapter 6. 

s.n   KI:SOI.II\C pHowMi-m. nunHKNCEs 

l*no   J^ '^7°' rjltuaf,0n t0 be *«***, reso^ng pronomal references, is common m natural 
language translation programs.   Charmak states the general reference problem as follows: 

If i tell a computer -Jatfc r.as » top and N/ary also has a top," to show a minimum 

Of underrtand.ng the machine must realize that I have mentioned two different 
tops. It will need some way to distinguish the two objects mternally, and since in 
bo h cases I used the phrase "a top," tne English description will not suffice    We 
Wl. JST* '^ '^ 0bjeCtrj dre rePresented by »wo distinct symbols, say, TQPl 
and TOP2.   Unfcrtunarely, when people speak, they don't refer to TOP2, they say' 
Mary s top." or "the top Mary found in the woods."   It will be necessary for our 

machine   to  take  such  English  aescnptions  and  decide   which  (if   any)  internal 
symbol is being reterrea to.  This, simply, ,s the reference problem (xi) 

Ru!tm^arnvk\"C?[lteX!uand ,he ReferenCe *****-' }Jnlu"'1 l***** *****, Ed. by R Rustm (New York: Algonthmics Press), 1973, pg. 311. 
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acce^^t'hr u«"   ^^ u
addressed  5everal   ,im"   i"   **   ^eporf   in   descr.bmg   both   PLX   and 

STÄ ^r^ iÄit^some pronoün form> the ~ p— zz 

statementT ^1'' lanSUd8e Pr0gramS, reS0,Ving * Prün0mial reference l? an 'mediate concern, a 

immed.ate ^PS "ono ^ '^ S COnSiS'ency 's h'^ responsibly, not  ansv.ermg 

The   pressure   witMfl  an   interactive  Automatic   Programrrnnp   system  ,s  «MMMI     n    i 

no,   Ques„on  ar.:.L8 'b
S:,":'en'er

e
a
0

e' ~  »£•»£ *****   Second,,, the ,0a, 15 

represdntaNona, wa, ,oget„er J.u, deb.^ng P^O.Id.es m"nS   Pr0,"d,n8   he,P   '"   ' 

p'oj:z^z:TZ ZoZV1: ?v; Thv',,uä,ion 's as •o,lo-"' •- •—« 
-X- dunn5 „ecull0n I ^ Ä^lXÄnS; ' " ,3) XREP ,"eS ,0 reSOlVe 

whenmtretha;0,d
e„;': % ll"X, reiQTf0anamb,güOUSre,erencelike",h'<"'**'■■ 

va.oe."  The « ,s ,he ".fs, S.'S^r r^^'rAST "" ^ 0"e ^ '^ '"*"' 

The problem is solved as follows: 

If the first position ,s unknown, i.e., it equals fT, each possible type can be 
hypothesized   to   see   if   the   reference   maKes   sense.    Th.s   step   wT be 

"snt9c;sr^D
a

or
TotrNAL wrh wi"reso,ve the prob!- * ~r 

^lo^eZ^ir   USeS ,h,S Var,ab,e ^^ a Ch0'Ce ^ b-d 

la'tchl^1 t1^ TS thiS Variable ,S enco^t^ed and the mtention string 
matches other than this unknown variable, the proper value for FT can be 

SÄKiSS  ^   ***  ,he  tyPe  0f  the  —^  ^   '"the6 

3. 
If no resolving TERMINAL is found out the program concludes correctly, the 
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hypothes^ed type ^s^ned i« Step 1 i, a.u.ea correct ard ..erted in the 
program. 

4.        When the second position of the typed vanable i« 'X, XREP must also fmd the 
correct binding and insert the proper count in place of 'X. 

An example can be oiven from fhp> PArvrv i/nuriM 

PLAYER.,. ,„ z npsi-Mo-w pr„r, ^^^^jfT^Jrr,ha' 'he "^v"^ 

FIRST-fyiOVE :■ (TERMINAL TT.W VQVES'.. .) 

If the intention string for the program was 

(JOE ROLLED 6) (JOHN ROLLED 1) (JOE MOVES 6 AND 1) 

VTM MOVESeAND"!^  ^T"    ^    ***    ^^     ^    when    ^RST-MOVE    generates 

found übe P AYER   Tt^hTtJ^T ^KT^«^ ,S matChed t0 J0E' whosl t    e 
first one found    Thus PLAYFR I   " Parh ^ * PLAYER b0und t0 J0E ^* « to b found.   Thus PLAYER.-l resolves the reference and is substituted in the program. 

b» the 
Progr 

be made Though this example and process are not particu-arly profound, several interesting points can 

• IHil tm of * Uuonuon strin« rnakos si,nPlr rrf.rrnrr »rohlnns „m,,/, ,. .,0/w. 

* rU^^rT^xT TX' f** * ^"^ l,r0hl("n * nalUrnl b***"*** h runrr mr i or \ romitononi. 

' ."MZ"/./:I """■ """'■""-"»- "■•■• "'-^ ""■--«'—'■ 
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6.     CONCLUSIONS AND FUTURE DIRECTIONS 

"rnis report has investigated _sorne rerresentational issues for both writing and analyzing 
programs within a hypothetical Automatic Programming framework. The motivation for many of the 
forms and analyses ongnated in an attempt to deal with situations likely to arise when a human 
describes an algorithm ;,. a computer. Within this paradigm the goal that the programming language 
should mirror natural language methods whenever possible accounts for the production system 
approach to PLX, its oata types, and structured organization. Similarly, the problems addressed by 
the various debugging discussions were meant to model common situations which, though natural in 
human communication, are imprecise or ambiguous in computer terms. The rest of this chapter, 
divided by the-.e language and debugging go*\s, will review thus report's accomplishements, and 
suggest future directions, while identifying problems discovered during the course of the research. 

6.1     THE PRODUCTION LANGU/ICS 

a 
My original thought about a target language for Automatic Programming leaned toward finding 

process representation which was both machine oriented and had a "programming" flavor. A 
production-type language fulfilled both criteria, satisfying my initial goal. Next, I had to augment the 
standard notion of a production language with capaoilities I envisioned necessary for the Automatic 
Programming task: intention strings, data generators, execution history, etc. With each added 
capability, PLX tooK on a more important role in tne project than I envisioned, important enough to 
warrant an appraisal of PLX as a language oevelopment. 

It has been said that a new programming language must contribute an order of magnitude more 
conceptual power to gam acceptance as a new veh,cle [WILE 73]. That measure is hard to apply to 
PLX, since i was not designed to be used by human programmers; an appropriate alternative 
benchmark has  >ot yet been established. 

What can be measured is the effectiveness of PLX to deal with its three main issues: 

1. PLX as a language. 

2. The control structure of PLX. 

3. The data generation and access mechanisms. 
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CONCLUSIONS AND FUTURE DIRECriONS 

Lnitannar 4t|NWlJ 

First of all, prooramc can be written m PLX. Thi« obstrvation reacts to the range of 
processes for which PLX is intcwM, i.e., those which Automatic Protrammmg might attempt to write. 
Though only a few ^Ogram (actu4lly Mfmtnts) were presented, others not included in the paper 
were written to insure that the lanouage constructs used were adequate, and those needed were 
easily implementable as well as consistent with the formalism. The BACKGAMMON segment was 
sufficiently complex to test the adequacy of many of my representation goals: heterarchical 
organization, natural data referencing, and so forth. If an Automatic Programming system is built 
arounr) a lAnglMge li'.c PLX, the present research will provide sone, but not all, the inputs 
necessary to conjure the bes» targe: lanSuase. Other language goals not tested by this 
study, like the ■.oherency of larg« PLX program«, »fflC»ncy, and ODtnm/ation, also need to \^ 
studied before any final conclusions can be made. Designing a computer language is an evolutionary 
process; PLX, as described here, is a first pass. 

Control Strnrtnrr in /'/, V 

Thn control structure of PLX is difficult to evaluate. The clarity in passing control from event 
to event, and the simplicity of picking production rules and appending them to the PEG, added 
substantially to understanding the behavior of a PLX program. However, the backtrack mechanism 
for driving the productions was a mixed blessing. Thougn it allowed a "successful" execution to be 
found without worrying about fals? paths, it came at the expense of making firm commitments in the 
error detection phase impossible. Winle fhis i« not tne first time general backtrack has caused 
probiemsd), several distinctive Mtuations did arise. 

if a top-down, syntax-driver, parser picks a production which causes a failure, the proces1" is 
Dacked up to the bad choice and a new rule is chosen. However, consider the PLX possibility vith 
the two rules 

A :- (COND pred) -> B 
A :- C 

An ALGOL interpretation of this production pair might be 

IF pred THEN B ELSE C 

If the predicate in the COND event fails, the action is clear, choose the A := C rule. But what if the 
predicate test passes, B is entered, and a failure occurs; should we backtrack, as PLX usually does 
now, or debug? In the ALGOL case, once B is entered, C is never again considered m this iteration; 
in PLX the failure in B is amoiguous. This is a general issue with generative systems: how is 
backtracking prevented when real errors are present'' The utility of the TERMINAL statements can 
be seen in this situation: E>'ent B can output enough information to identify the manifestation of a 
possible  error.   This solution will  not take care of  all cases, but it  is certainly  adequate  for  a 

(i) See From PL/ISMW to OOHNWKM -- A Gmmk /Ippronrl, [SUSSMAN 72] for a similar situation. 
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substantial set.   in no case did I ever confuse a real error with a normal backtracking situation (while 
watching the process at a terminal); whether a novice will be so adept is a different question. 

A different, less substantial issue in this area concerns varied control structures for producing 
iteration. Between the GENSEQ and production rule recursive control mechanism, all iterations are 
possible. However, largfl ones could easily cause an explosion in PEG size. One solution might 
incorporate some loop skeleton or frame structure to represent a loop, with local changing values 
updated as indicated. More important is that such a frame may be the basis for understanding loop 
execution and their associated problems. In any case, some more specific loop structures .>re 
needed m a complete Automat.c Programming target language. 

Dntn Grnrrntiou and  Irrrss Mrrhnnivns 

The data methods m PLX attempt to irKOrporat« a problem-solving function as a syn'artic 
language device. The acces; pat I searcres, tne ralativa reference types, and the generators all try 
to retain and use dynamic 'nformaticn m a manner natural to English. Keeping these functions in the 
language illows a fiex.biMy of expression and an information gam which would be lost if all 
refarence^ were resolved (or aitemoted to be resolved) at translation time. The major contribution 
of PLANNE,-? [HEWITT 72] was the fcma.ization of powerful problem-soivmg tools, like backtrack and 
pattern ,r,vOKed proceoures, into a cderent language.   PLX does the same with its typed variables. 

The oasic ^dea m accessing dynamically produced data is that data has a position within an 
execution that carries information which can be exploited to the system's benefit.   For example, the 
reference 

DIEVAL.1 FROM PLAYER.-2 FROM ROLLDIE 

from page 55 not only shows how an ambiguity can arise, bu. gives a graphic interpretation of it as 
well.   If the manifestation of all proolems were so explicitly capturable, debugging efforts would be 
minimized. 

A different situation, in which tne ipalial natura of data is natural and easy to accept, exists 
when complex linkage between two data items is necessary before an association between them can 
be made. For example, in a card game, a request for all the Kings a particular player holds might be 
something like (HAS JOHN KING). Requests like this generally fail because players have cards and 
ca-ds not players have rank. So, some inference mechanism must find the appropriate linkage to 
make the request legitimate. In PLX if the cards are generated after a player, the player and the 
cards are associated merely by being adjacent in the same access path. This association, powerful, 
simple, and intuitive, is easy to express m PLX. 

The spatial positioning of data can also be appliea in a manner not currently allowed in XREP. 
Recall that when a typed variable is unbound, the NOBIND algorithm tries to find the required 
instance, then reconfigures the access caths so the request succeeds. In solving the problem, th* 
algorithm makes available not only the requ.red data, but everything else which may be in its acce^ 
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lay or may not cause future errors, but generally it seems 

to another when t. r     *   * ^"^ »'^ "^ Z0M "^ da,fl fr0m °™ ^W path 
hem un h,0?! V   i 'T^JZ**' **** UKe *** * accesi ^b * ™^ & values) and backing 

em up h Sh enough m the PEG .o O'hers have access to them.    Th.s idea is mtnaumg because oi 

JtT      '    ST   ' Can ^ d0ne W,,l' SOme ***** *"»»*• ^ ^ INSERT, thedebu-np 

i hha";:::'?.: 7^1^M/ cor'cern '•with how natürai such a ^^ * > *~nf^ tngnsn nas a correspond ng construct. 

oath, t 2S!Ü L0lü,l0n, 'S t0 Perr'llt ,toc,iri,i0n« '" ,he '««iun«.   If a reference  across access 

PLX m v b. t ?     f^   de;iär,,t,0ns are n0t ^ 0' "•*'•' 'ansage, including them a language HKe 
PLX may be perfectly sound; certamiy they o,mpl,fy problems liKe these, though perhaps only locally 

EmJa TJ ^nM0" T^^0" ^^'^ PLX "^ Sh0Wn t0 ^^ a f0rm Mtür«"y ccrrespondmg to 
situalJ^ ' "•  ^^   :",e   ""DEX   and   Fi,ND   ,UnCt'0nS   handled   a   ^»»V   Of   common 
situations.   Still some improvemonts are possible.   One is to allow a GENSEQ or GENMEM to Iroduc* 
previously   generated   items.    Recall   that   ,ts   mernoers   now   cone   from   asserhons   ,n   the   pToba 

ST^JT    da,a b"e ;See ^^ 3n    Th'5 faClhty ^Uld «*• an -terpretat on t    a state'men 
like   generate a sequence of all the e*,st:ng players who nave a King in their hands." 

FIND /''r ^^ ,S a Pref 'e 'orm*U2aUon of 'he capabiiitiM of these methods.   The INDEX and 

toub e" A"1:   tr f   S Ca,e5Cry-   S^ ^ ^ ^ 0f ^^  ^ «^ ^- - 
tua^ on. ra!PH h    tn 5 '^'^    Can ' PreCISe e^,anat:0n be 'or-^«'ed for the anomalous 

ran 'ard
q
0

U: rof ^ T 0 ^^ '" ,he ^"^ ""duration of PLX^becau.-.e the e'act 
range and domam of the functions are unknown. The lack of formally is not disturbmp vet- 
experience with d particular metnod is generally required before formahzation ,s po ble 'som ' 

ZlZTnlT been ßa,ned ^ ,he eXPer,rnentS 0f ,h,S d^^ ^ - -ed'ed  forprope! 

6.2    rm: wc. iNrmmom, /WD OKBUGCING 

PEG   Z^ll üiTi^     I' ^  ^ dre 8r0Uped t0eS,her because of ,heir interdependence:   The 
*Sl-Tl n'aj      inf

l
0rmat,ün struc,ure r^««l e^^^ion  to the  production  rules, guides  the 

debugging   process.  wh:ch  ,s  in  lurn  often  actuated  by  intention stnng  failures     Each   w I   be 
reviewod as an entity and as a part of XREP. 
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w.lho^t a great deal o( comlotl  ^ > W™ly COmn'c'r" and K ,h^ "<*< he solved 

'..teract  IK |ry,„S  to »ene-ate OrO.ram,. U^.^ '  '  '"*»**   ^  COmpot.ng  ,yrAe„ 

•Vtlm. I. to g.ve the .„ta, „„„ ;,ee°om in   . lrk   .   ^ ''1!""' 'n m0dern "«V««"*« 
' "at   sol.tron   betöre   .ivM.   control  bar. To   C ^      0    ' S* Pr0S""""er nearer to the 
-tended to work ,0 „,■: dire'ct on P'oerammer.   XREP's debussln6  algbrdhms   are 

.epreSen'üt!,oi'n,sdö°.er:d'l'bvexPEpd::r3.r3 321^ be"USe ^ de0e"d " =»-'-' 
-etore. ratber ^J^^^Är^rXTjSTr ""^T'""8 V™ 

work and how they can be improved. ' SCUSS what  rnakes ther" 

y  on the 

.nder-Tand^ sSX STJI   'r1"1'0"   ,0S<"her   W'ih   '   t!,"'c>(e,e   "«"•««"    KW«»     an 
oe.ore sobctln       anal  - 5 " po-   bVe   nLZ?«- TTl   H0WeVe'' muth ™'e ^ —»»" 

-a„onS leaLg to tbe MÄ^^HTT^ ^^tToIr ^   ^ 

A  sophisticated  matcher  could  makn   an   hi«A   „< 
routines could acce-s for rL, J/T A T 0    assumptions   which   individual   debug^n? 

How similar it the Output to the target' 

Will some simple reora-nng withm the strmg work' 

Has the output appeared before' 
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